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Foreword

This AGACSE-2015 Conference, devoted to David Hestenes for his masterly leadership in
promoting, disseminating and teaching Clifford’s Geometric Algebra, offers us the
opportunity of instituting the AGACSE-2015 Prize as the first David Hestenes Prize.

It will be awarded to the best junior contribution to the AGACSE Conference in any of the
several domains that gather together in the AGACSE community: mathematics, physics,
engineering, computing science. They are all complementary and necessary from a
universal perspective, faithful to the original Leibniz’s dream of creating a characteristica
universalis, a language able to provide a complete description and direct manipulation of
geometrical and physical entities.

This Barcelona meeting is also an opportunity to remember and pay a due homage to the
Mexican Jaime Keller Torres. Founder and lifetime editor of the Advances in Applied Clifford
Algebras, he was until his untimely death one of the most active and prominent builders of
the new area of Geometric Algebra. He was an extraordinary open minded scientist and a
true humanist, and Barcelona, Wien and Toulouse (where he was awarded the Golden
Medal of the Université Paul Sabatier) were loved and cherished cities in which he worked
in and promoted the Clifford Algebra research.

Roger Boudet, Roy Chisholm, Gaston Casanova, Richard Delanghe, Artibano Micali, and
especially Pertti Lounesto, are among those members of our community that would most
likely have been very happy to participate in this first meeting of Clifford Geometric Algebra
in Barcelona (and Spain).

In this Early Proceedings we have assembled the abstracts of invited plenary speakers and
the contributions of the participants. The first abstract is that of Hestenes’ keynote lecture,
Fifty Years with Geometric Algebra: a retrospective, to which we have appended his lovely
essay Physics cum Mathematics for Modeling the Physical World, as he will refer to it in his
lecture.

As indicated in the index, the contributions of the participants are ordered according to the
family name of the presenter and we have given equal consideration to the abstracts and
papers stemming from a talks (plenary and in parallel) or from a poster presentation. This
obeys to the wish to give equal opportunity to all participants with regard to the final
proceedings. Let us take the occasion to thank the Scientific Committee for his refereeing
job and for the advice: Pierre Anglés, Eduardo Bayro-Corrochano, Eckhard Hitzer,
Anthony Lasenby, Hongbo Li, and Josep Manel Parra-Serra.



Our thanks to all the sponsors, and most especially the Universitat Plitecnica de Catalunya,
the Facultat d’Informatica de Barcelona and the Departments of Applied Mathematics |l
and of Computed Architecture, which have provided all the facilities, human and material;
the Catalan and Spanish mathematical societies, which in particular guaranteed that we
could provide each participant a copy of the second edition of Hestenes’ Space-time
Algebra; the Facultat de Matematiques i Estadistica of the UPC and the Centre de Recerca
Matematica; and last, but not least, the participants, among which the some two thirds that
have taken part in the AGACSE 2015 Summer School held in the preceding two days.
Without the sum of all these factors this event would not have been possible. A thankful
mention also to ARM (The Architecture of the Digital World), for sponsoring the special
plenary lecture by Chris Doran and the MO Labs for sponsoring the glass sculpture for the
Hestenes’ Prize.

Finally our thanks to AGACSE, and most especially to Eduardo Bayro Corrochano, for having
given us the chance to contribute to spread the word about the importance of Clifford
Geometric Algebra in research and in designing better curricula for mathematics, physics
and engineering studies.

The editors,

Sebastia Xambo6 Descamps
Josep Manel Parra Serra
Ramon Gonzdlez Calvet






DAVID HESTENES

The Genesis of Geometric Calculus (keynote lecture)

Summary

This will be a retrospective account of my personal journey in discovering, re-
vitalizing and extending Geometric Algebra, with emphasis on the origin and
influence of my book Space-Time Algebra. | will discuss guiding ideas, signif-
icant results and where they came from — with recollection of important events
and people along the way. Lastly, | offer some lessons learned about life and
science.

The following essay, published in these Early Proceedings for the first time, is included as
the author will refer to it in his lecture.

Physics cum Mathematics
for Modeling the Physical World

David Hestenes

Abstract: Physics and mathematics have common ground in man’s evolved ability to
freely create mental models and use them to manage interactions with the natural
world. But they differ in the ways they relate to experience.

The Copernican Revolution in science culminated in Newton’s Principia (1687), which in-
tegrated astronomy and terrestrial physics into a single science of motion. Immanuel Kant (1787) saw
this as a striking union of mathematical theory with empirical fact that bridged the traditional divide
between rationalism and empiricism. So he proposed a comparable “Copernican Revolution™ in phi-
losophy to account for it [1]. Just as Copernicus shifted the center of the universe from earth to sun,
Kant shifted the focus of epistemology from structure of the external world to structure of mind. His
revolutionary insight was that our perceptions and thoughts are shaped by inherent structure of our
minds. He argued that the fundamental laws of nature, like the truths of mathematics, are knowable
precisely because they do not describe the world as it really is but rather prescribe the structure of the
world as we experience it.

Though the scientific revolution has expanded in spectacular fashion to integrate physics and
astronomy with chemistry and biology, Kant’s revolution in philosophy has hardly progressed. His
profound influence on the epistemology of physics is evident in the writings of Einstein and Bohr as
well as many other scientists and philosophers. However, continued debates on such topics as the



interpretation of quantum mechanics show no signs of consensus, and they have overlooked recent
advances in cognitive science with high relevance to epistemology.

My purpose here is to open a new stage in Kant’s revolution by explaining how findings of
cognitive science can be marshaled to create a new “science of mind” with testable predictions and
explanations as required of any “true” science. | begin with a restatement of Kant’s primary question:
What does the structure of science and mathematics tell us about how the human mind works? In
searching for answers my working hypothesis will be: The primary cognitive activities in science and
mathematics involve making, validating and applying conceptual models! In a word, science and
mathematics are about MODELING — making and using models!

This essay argues for a “MODELING THEORY of MIND” to guide the multifarious
branches of cognitive science in research on the nature of mind and brain, and the design of conceptual
tools for science and mathematics. Core principles are explained and supporting evidence is sketched,
but the brush is necessarily broad. More details are given in [2,3,4], especially for application to
physics teaching and learning.

I. NEWTON’S MODELING GAME

Newton did much more than provide the first mathematical formulation of a scientific theory
in his Principia; he also demonstrated how to relate it to empirical fact. Though Kant recognized
revolutionary implications for epistemology in this impressive feat, physicists have overlooked it.
The issue has been thoroughly explicated in [5] by framing Newtonian theory in terms of models and
modeling, so brief mention of key points is sufficient here. Newton could not make the crucial dis-
tinction between model and theory explicit in his original formulation, because the concept of model
did not emerge in scientific discourse until the nineteenth century. But [5] shows that he made it
implicitly. The point is that theoretical principles like Newton’s Laws cannot be tested or applied
except by incorporating them in models. Thus, models mediate between theory and experiment. And
Newton’s Laws can be regarded as a system of design principles for making models to describe, to
predict, to explain and to control motions of material bodies.

Kant’s insight can be explicated by noting that Newton linked up two distinct kinds of mod-
els: theoretical and empirical. A theoretical model derived from Newton’s Laws predicts motions,
while an empirical model derived from data describes a motion. A match between them explains a
motion. In this way Newton explained Galileo’s law of falling bodies and Kepler’s three laws of
planetary motion. Note the distinction between a theoretical Law (with a capital L) and an empirical
law (with a lowercase 1), also called an empirical model.

Comparison between theoretical and empirical models is such a standard practice of physi-
cists since Newton that they seldom consider its profound epistemological implications. At its sim-
plest, it involves creating an empirical model from data with a procedure often called “curve fitting.”
That’s how Kepler’s laws were derived. It is an important technique in the search for empirical reg-
ularities that are both quantifiable and reproducible. In high energy physics data analysis has become
so complex that a new research specialty has emerged to handle it. That research, often called “phe-
nomenology,” is thus intermediate between theory and experiment.

For future analysis, it is worth noting that scientific work in all three domains is governed by
definite but different rules; from mathematical rules for theorists, to measurement standards for ex-
perimentalists, to probability theory for phenomenologists. As Kant recognized, scientific objectivity
requires strict adherence to rules. The question is: Where do the rules come from?



I[l. FROM COMMON SENSE TO SCIENTIFIC THINKING

As we grow and learn through everyday experience, each of us develops a system of common
sense (CS) concepts about how the world works. To evaluate introductory physics instruction, the
Force Concept Inventory (FCI) was developed to detect differences (in student thinking) between CS
concepts and Newtonian concepts about motion and its causes [6]. Results from applying the FCI
were stunning from the get-go! First, the differences were huge before instruction. Second, the change
was small after instruction. Third, results were independent of the instructor’s experience, teaching
method and peer evaluation. These results have been replicated thousands of times from high school
to Harvard and in 25 different languages. The FCI is by far the most cited reference in the physics
education literature, and it is widely used today to evaluate the effectiveness of teaching reforms.

Here we are interested in what the FCI tells us about human cognition. The FCI is based on
a taxonomy of 35 CS concepts in 5 major categories [6]. These concepts are overlooked or summarily
dismissed as misconceptions by most physicists. However, they are common outcomes from every-
day experience, and they are quite serviceable for dealing with physical objects. Moreover, central
CS concepts in the 5 categories have been clearly articulated and discussed by major intellects of the
pre-Newtonian age, including Newton himself before the Principia [7]. So CS concepts should be
regarded as alternative hypotheses about the physical world that, when clearly formulated, can be
tested empirically.

For example, the CS concept: “a moving object implies existence of a force (a mover)” con-
travenes Newton’s First Law. The Second Law is contravened by the concept that forces are due to
“active agents” (usually living things), so there are no passive forces, although motion is deflected by
passive objects called “barriers.” The Third Law is contravened by the common metaphorical notion
that “interaction is like war” so in the “struggle between forces” “victory goes to the stronger.” In
fact, CS thinking is shot through with metaphorical notions. One consequence of all this is that in a
conventional physics course students systematically misinterpret what they hear and see in class,
which goes a long way to account for the typical disastrous student performance on exams.

Ability to distinguish between CS concepts and scientific concepts in the FCI or elsewhere is
not a matter of intelligence but of experience. It is acquired only by engagement with science itself,
usually through academics. Remarkably, physicists seldom recall any event in their own transitions
to Newtonian thinking. Typically, they presume that the world of classical physics is given directly
by experience, in contrast to the subtlety and weirdness of quantum mechanics. They are blind to the
subtle revolution in their own thinking that came from learning physics; for the FCI tells us that
classical physics differs from common sense in almost every detail.

These facts suggest that the transition from common sense to scientific thinking is not a rem-
placement of CS concepts with scientific concepts, but rather a realignment of intuition with experi-
ence. Science does not replace common sense. Rather, as Modeling Theory aims to show, science is
a refinement of common sense differing in respect to:

objectivity — with explicit rules & conventions for observer-independent inferences,
precision — in measurement, in description and analysis,

formalization - for mathematical modeling and analysis of complex systems,
systematics — coherent, consistent & maximally integrated bodies of knowledge,
reliability — critically tested & reproducible results,

skepticism — about unsubstantiated claims.



I11. “What, precisely, is thinking?” — Einstein

Kant is unsurpassed in using introspection to analyze his own thinking. But introspection was
dismissed as subjective and unreliable by behaviorists in the twentieth century, who claimed that
scientific objectivity requires psychology to take its data from observable behavior under controlled
conditions. However, the behaviorist straight jacket has been cast off in recent decades by the emer-
gence of cognitive science, which draws its data and insights from many independent academic dis-
ciplines. Disciplinary barriers are crossed with increasing frequency, largely due to the speed and
ease of electronic communication.

Human perception, memory and cognition are being studied in many different ways. The
problem, as ever in science, is to identify reproducible patterns in the results. Here follows a sampling
of approaches and results with high relevance to Modeling Theory.

The Learning Sciences: Research on teaching and learning is emerging as a coherent science
with independent branches like physics education research (PER) devoted to a single discipline. The
most robust finding in the field is that effective teaching requires matching the method to the subject
matter, and that requires research embedded within each discipline.

An outstanding example of PER is Andy diSessa’s probing study into common sense notions
of force [8]. He identifies a structure in common sense intuition that he calls Ohm’s p-prim. As he
explains,

Ohm’s p-prim comprises “an agent that is the locus of an impetus that acts against
a resistance to produce a result.”

Evidently this intuitive structure is abstracted from experience in pushing objects. It is an important
characterization of the central Force-as-Action metaphor identified by the FCI. It also seems to be
fundamental in the intuition of physicists, who often declare “A force is a push or a pull,” although
they have extracted that from human action.

More generally, diSessa argues that this structure is fundamental to qualitative reasoning. He
notes that the logic of Ohm’s p-prim is

the qualitative proportion:  more effort = more result,

and the inverse proportion:  more resistance = less result.
This reasoning structure is often evoked for explanatory purposes in everyday experience.

As disclosed in Ohm’s p-prim, the concept of (causal) agency entails a basic
Causal syntax: agent — (kind of action) — on patient — result.

DiSessa notes that this provides an interpretative framework for F = ma, and he recommends exploit-
ing it in teaching mechanics. However he does not recognize it as a basic aspectual schema for verb
structure, which has been studied at length in cognitive grammar [9]. Aspectual concepts are gener-
ally about event structure, where events are changes of state and causes (or causal agents) induce
events.

All this has direct bearing on Kant’s Critique. He said Hume woke him from his “dogmatic
slumber” with his argument that no amount of empirical data can establish a cause-effect relation
between events with certainty. Claiming that Newton’s Laws do establish causality with certainty,
Kant argued that it must therefore be known prior to experience (“synthetic a priori””). One can argue
instead that the fundamental Laws and Principles of science are discovered as general patterns in
experience and simply adopted as postulates in our theories. But Ohm’s p-prim shows that causality



is imbedded in the way we think and so it may be a precondition for recognizing causal patterns. In
this sense, at least, cognitive science supports Kant’s view.

All this has bearing on other domains of cognitive science, for example, the psychology of
perception. In particular, it provides more support for the view that there is no such thing as “passive
perception.” All perception is part of a “perception-action cycle.” Even viewing a static visual scene
is impossible without rapid movements of the eyeballs (saccades) to sample the visual input. In gen-
eral, we learn about the world around us from our interactions (perception-actions) with it.

Note that the intuitive causal syntax discussed above can be construed (by metaphorical
projection at least) as

Operator syntax: agent — (kind of action) — on patient — result,

where the action is on symbols (instead of material objects) to produce other symbols. When the
symbols are words, this provides an intuitive base for verb structure expressing the action of mental
agents on mental objects. The same idea has emerged independently in cognitive linguistics (see be-
low). Also, the operator syntax provides an intuitive base for the mathematical concept of function
(though probably not the only one).

Narrative Comprehension: Readers of stories construct mental models of the situation and
characters described [10]. They infer causal connections relating characters' actions to their goals.
They also focus attention on characters' movements, thereby activating nearby parts of the mental
model. This activation is revealed in readers' faster answering of questions about such parts, with less
facilitation the greater their distance from the focus. Recently visited as well as imagined locations
are also activated for several seconds. These patterns of temporary activation facilitate comprehen-
sion.

Evolutionary Psychology [11] tells us that human brains evolved adaptively to enable navi-
gation to find food and respond to threats. Successful hunting required a number of cognitive abilities:
To create mental maps of the environment and plan actions, to design helpful tools, to “read” subtle
clues in natural surroundings; and, finally to communicate and cooperate with other humans.

There can be little doubt that narrative emerged in human prehistory. The practice of story-
telling is ancient, pre-dating not only the advent of writing, but of agriculture and permanent settle-
ment as well. Language, an obvious prerequisite for storytelling, is likely to have emerged between
50,000 and 250,000 years ago. Cognitive linguistics (see below) aims to ascertain what language can
tell us about evolved cognitive abilities.

Cognitive Psychology: Psychologist Philip Johnson-Laird [12] is a pioneer in studying hu-
man inference by manipulating mental models. His research supports the claim that most human rea-
soning is inference from mental models. We can distinguish several types of model-based reasoning:

e Abductive, to complete or extend a model, often guided by a semantic frame in which the
model is embedded.

Deductive, to extract substructure from a model.

Inductive, to match models to experience.

Analogical, to interpret or compare models.

Metaphorical, to infuse structure into a model.

Synthesis, to construct a model, perhaps by analogy or blending other models.

Analysis, to profile or elaborate implicit structure in a model.



Justification of model-based reasoning requires translation from mental models to inference from
conceptual models that can be publicly shared, like the scientific models discussed below.

In contrast, formal reasoning is computational, using axioms, production rules and other
procedures. It is the foundation for rigorous proof in mathematics and formal logic. However, Mod-
eling theory (see below) holds that mathematicians and even logicians reason mostly from mental
models. Model-based reasoning is more general and powerful than propositional logic, as it integrates
multiple representations of information (propositions, maps, diagrams, equations) into a coherently
structured mental model. Rules and procedures are central to the formal concept of inference, but they
can be understood as prescriptions for operations on mental models as well as on symbols.

Psychology of Spatial Perception: Everyone has imagination, the ability to conjure up an
image of a situation from a description or memory. What can that tell us about mental models? Some
people report images that are picture-like, similar to actual visual images. However, others deny such
experience, and blind people are perfectly capable of imagination. Classical research in this domain
found support for the view that mental imagery is internalized perception, but not without critics.

Barbara Tversky and collaborators [13] have tested the classical view by comparison to
mental model alternatives. Among other things, they compared individual accounts of a visual scene
generated from narrative with accounts generated from direct observation and found that they are
functionally equivalent. A crucial difference is that perceptions have a fixed point of view, while
mental models allow change in point of view. Furthermore, spatial mental models are more schematic
and categorical than images, capturing some features of the object but not all and incorporating
information about the world that is not purely perceptual. The general conclusion is that mental
models represent states of the world as conceived, not perceived. To know a thing is to form a mental
model of it.

Major characteristics of spatial mental models are summarized in the following list. The best
fit to data is a spatial framework model, where each object has an egocentric frame consisting of
mental extensions with three body axes.

Spatial MENTAL models

are schematic, representing only some features,
are structured, consisting of elements and relations.
Elements are typically objects (or reified things).
Object properties are idealized (points, lines or paths).
Object models are always placed in a background (context or frame).
Individual objects are modeled separately from the frame,
so they can move around in the frame.

The details in this list are abundantly supported by other lines of research, especially in cognitive
linguistics, to which we now turn.

Cognitive Linguistics: The most extensive and coherent body of evidence comes from cog-
nitive linguistics [14], supporting the revolutionary thesis: Language does not refer directly to the
world, but rather to mental models and components thereof! Words serve to activate, elaborate or
modify mental models, as in comprehension of a narrative.

This thesis rejects all previous versions of semantics, which located the referents of language
outside the mind, in favor of cognitive semantics, which locates referents inside the mind. | see the
evidence supporting cognitive semantics as overwhelming, but it must be admitted that some linguists
are not convinced, and many research guestions remain. Cognitive semantics can be regarded as a




culmination of Kant’s revolution toward an epistemology grounded in science, though that is not
often recognized by linguists.

Two pillars of cognitive linguistics deserve mention here. The first pillar is Eleanor Rosch’s
discovery that natural categories are determined by mental prototypes. For example, “birds” are
classified by comparison to a prototypical bird, such as a robin. This should be contrasted with the
classical concept of a formal category for which membership is determined by a set of defining prop-
erties, a noteworthy generalization of the container metaphor. This distinction between category types
is supported by a mountain of empirical evidence on natural language use.

The second pillar is the notion of image schema introduced by Mark Johnson and George

Lakoff. Image schemas are basic structural units (gestalts) that provide structure to natural language
and presumably cognition. There are too many to discuss here. Many are discussed in [15] as struc-
tural elements in mathematical thinking, including four grounding metaphors for arithmetic.

Cognitive Neuroscience: Human brain structures have evolved to support perception,
memory and movement, that is, all components needed to execute the perception-action cycle. But
no distinct component for cognition has been identified. It seems reasonable, therefore, to conclude
that cognition is executed by coopting drivers of the perception-action for internal planning and sim-
ulation.

Stanislas Dehaene reports [16]: “Mathematicians frequently evoke their “intuition” when
they are able to quickly and automatically solve a problem, with little introspection into their own
insight. Cognitive neuroscience research shows that “automaticity aspect” of mathematical intuition
can be studied in the laboratory in reduced paradigms, and that relates to the availability of “core
knowledge” associated with evolutionarily ancient and specialized cerebral subsystems.” Subsystems
involved in basic operations of arithmetic (such as number estimation, comparison, addition and sub-
traction) have been identified as genetically hardwired. The boundary between hardwired and learned
mathematical abilities continues to be a rich area for further research.

The empirical research cited above supports an answer to Einstein’s question: Thinking is a
hardwired human ability to freely create mental models and use them for planning and controlling
interactions with the physical world. To deepen this insight and coordinate empirical results, we need
a scientific theory, to which we now turn.

IV. MODELING THEORY

Though Modeling Theory is proposed as a general theory of Mind embracing all aspects of
cognitive science, we limit our attention here to cognition in physics and mathematics. We have seen
above that the study of natural languages gives us rich information about the structure of mental
models in common sense cognition. Given its greater precision and coherence, we can expect com-
plimentary and reinforcing results from studying the language of science, especially mathematics.
Indeed, after spelling out the structure of scientific models in explicit detail below, we discuss its
implications for cognition in physics and mathematics.

Our formulation of Modeling Theory rests on explication of two key concepts “model” and
“morphism.” We begin with the definition:

A model is a representation of structure in a given system.




A system is a set of related objects, which may be real or imaginary, physical or mental, simple or
composite. The structure of a system is a set of relations among its objects. The system itself is called
the referent of the model.

We often identify the model with its representation in a concrete inscription of words, sym-
bols or figures (such as graphs, diagrams or sketches). But it must not be forgotten that the inscription
is supplemented by a system of (mostly tacit) rules and conventions for encoding model structure.

From my experience as a scientist, | have concluded that five types of structure suffice to
characterize any scientific model. Although my initial analysis was based on physics, | have con-
cluded the classification is sufficient for all other sciences as well. As this seems to be an important
empirical fact, a brief description of each type is in order here.

Universal structures in scientific models [2, 17]:

e Systemic structure: Its representation specifies (a) composition of the system (b) links
among the parts (individual objects), (c) links to external agents (objects in the environment).
A diagrammatic representation is usually best (with objects represented by nodes and links
represented by connecting lines) because it provides a holistic image of the entire structure.
Examples: electric circuit diagrams, organization charts, family trees.

o Geometric structure: specifies (a) configuration (geometric relations among the parts), (b)
location (position with respect to a reference frame)

e Object structure: intrinsic properties of the parts. For example, mass and charge if the ob-
jects are material things, or roles if the objects are agents with complex behaviors. The ob-
jects may themselves be systems (such as atoms composed of electrons and nuclei), but their
internal structure is not represented in the model, though it may be reflected in the attributed
properties.

e Interaction structure: properties of the links (typically causal interactions). Usually repre-
sented as binary relations on object pairs. Examples of interactions: forces (momentum ex-
change), transport of materials in any form, information exchange.

e Temporal (event) structure: temporal change in the state of the system. Change in position
(motion) is the most fundamental kind of change, as it provides the basic measure of time.
Measurement theory specifies how to quantify the properties of a system into property vari-
ables. The state of a system is a set of values for its property variables (at a given time).
Temporal change can be represented descriptively (as in graphs), or dynamically (by equa-
tions of motion or conservation laws).

Optimal precision in definition and analysis of structure is supplied by mathematics, the science of
structure.

Both the model and its referent are structured objects, but they need not be distinct. Indeed,
the usual notion of a mathematical model as a representation in terms of mathematical symbols does
not specify any referent, so we say it is an abstract model. Of course, it is a perfect representation of
itself. This suggests that we regard any structured object as an “abstract model.”

Our definition of “model” above is likewise abstract, because it does not specify the worlds
(domains) in which the model and its referent exist as structured objects. To address this issue, Mod-
eling Theory [3] posits three distinct worlds in which structured objects exist:



e World 1: The PHYSICAL WORLD of real things and events, including biological entities.
o World 2: The MENTAL WORLD of mental models generated by perception or intuition.

o World 3: The CULTURAL WORLD of human artifacts, including natural languages and
mathematics in any form, written or spoken.

This helps us make a crucial distinction between mental models and conceptual models. Mental
models are private constructions in the mind of an individual (World 2). They can be elevated to
conceptual models by encoding model structure in symbols (World 3) that activate the individual’s
mental model and corresponding mental models in other minds. Thus, communication between indi-
viduals involves construction and use of shared conceptual models.

Note that a conceptual model establishes an analogy between a mental model and its sym-
bolic representation. Mathematical models are symbolic structures, and to understand one is to create
a mental model with analogous structure. Actually, the structure is supplied by the mind not the sym-
bols, which are reduced to meaningless marks without a mind to interpret them.

An analogy is defined as a mapping of structure from one domain (source) to another (target)
[18]. The mapping is always partial, which means that some structure is not mapped. Science sets up
many kinds of analogy between and within the three worlds [3]. Thus, experimental testing or simply
interpreting a scientific model (World 3) requires a mapping to a physical system (World 1) that I call
a referential analogy. Material analogies relate structures of different physical objects in World 1
and this reduces to an inductive analogy when the objects are regarded as identical. And there are
many more analogies with computer models (World 1).

There are other kinds of structure-preserving mappings such as metaphors, which Lakoff [15]
defines as a projection of structure from one domain into another. | recommend formalizing all such
concepts with the technical term MORPHISM. In mathematics a morphism is a structure-preserving
mapping: Thus the terms homomorphism (preserves algebraic structure) and homeomorphism (pre-
serves topological structure).

Now let us reconsider Kant’s trenchant analysis of thinking in physics and mathematics.
Physical intuition is accorded the same high regard by physicists that mathematicians accord to math-
ematical intuition. To quote unquestionable leaders in each field [2]:

Einstein explains,

“The words or the language, as they are written or spoken, do not seem to play any
role in my mechanism of thought. . . . The physical entities which seem to serve as
elements in thought are certain signs and more or less clear images which can be
voluntarily reproduced and combined. . . . “

Hilbert asserts,

“No more than any other science can mathematics be founded on logic alone; rather, as a
condition for the use of logical inferences and the performance of logical operations, some-
thing must already be given to us in our faculty of representation, certain extralogical con-
crete objects that are intuitively present as immediate experience prior to all thought.”

Modeling theory asserts that physical and mathematical intuitions are merely two different ways to
relate products of imagination to the external world. Physical intuition matches structure in mental
models with structure in physical systems. Mathematical intuition matches mental structure with



symbolic structure. Thus, structure in imagination is common ground for both physical and mathe-
matical intuition.

Kant reasoned in much the same way. He also took the physics and mathematics of his day
as given and asked what makes them so special. His analysis is cogent even today, so key points are
worth reconsidering. He began by identifying construction in intuition as a means for acquiring
certain geometrical knowledge:

“Thus we think of a triangle as an object, in that we are conscious of the combina-
tion of the straight lines according to a rule by which such an intuition can always
be represented. . . This representation of a universal procedure of imagination in
providing an image for a concept, | entitle the schema of this concept.”

Kant did not stop there. Like any good scientist he anticipated objections to his hypothesis. Specifi-
cally, he noted that his intuitive image of a triangle is always a particular triangle. How, he asks, can
construction of a concept by means of a single figure “express universal validity for all possible in-
tuitions which fall under the same concept?” This is the general epistemological problem of univer-
sality for the case of Kant’s theory of geometrical proof. Kant’s notion of geometrical proof is by
construction of figures, and he argues that such proofs have universal validity as long as the figures
are “determined by certain universal conditions of construction.” In other words, construction in in-
tuition is a rule-governed activity that makes it possible for geometry to discern “the universal in the
particular.”

Kant’s argument is often dismissed because it led him to conclude that Euclidean geometry
is certain a priori. But that is a red herring! Because we now know that non-Euclidean geometry can
be associated with the same intuitive construction simply by changing the rules assigned to it. His
essential point is that mathematical inference from intuition is governed by subsumption under
rules. As mathematician Saunders MacLane [19] asserts, “Mathematics is not concerned with reality
but with rule.”

V. RULES AND TOOLS FOR THINKING AND DOING

Science and technology have coevolved with language and mathematics. The evolution is
driven by invention of tools with increasing sophistication and power to shape and understand the
physical world. The tools of science are of two kinds: instruments for detecting reproducible patterns
in the material world, and symbolic systems to represent those patterns for contemplation in the mind.

The detection of patterns in nature began with direct observation using human sensory appa-
ratus. Then the human perceptual range was extended by scientific instruments, such as telescopes
and microscopes. Finally, Technology has replaced human sensory detectors with more sensitive in-
struments, and the data is processed by computers with no role for humans except to interpret the
final results; even there the results may be fed to a robot to take action with no human participation
at all.

Tool development in the cognitive domain began with the natural languages in spoken and
then written form. Considering their ad hoc evolution, the coherence, flexibility and subtlety of the
natural languages is truly astounding. More deliberate and systematic development of symbolic tools
came with the emergence of science and mathematics. The next stage of enhancing human cognitive
powers with computer tools is just beginning.
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While science is a search for structure, mathematics is the science of structure. Every science
develops specialized modeling tools to represent the structure it investigates. Witness the rich system
of diagrams that chemists have developed to characterize atomic and molecular structure. Ultimately,
though, these diagrams provide grist for mathematical models of greater explanatory power. What
accounts for the ubiquitous applicability of mathematics to science? An answer is suggested by con-
sidering the coevolution of mathematics and physics from the perspective of modeling theory.

Tools of technology provide an obvious index of progress in human civilization, because
their results are so tangible. A more subtle and informative index is the development of language and
mathematics, which provide us with tools to think with! Though spoken language reaches back more
than 150,000 years, written language is barely 5,000 years old, and printed books less than 700. With
the invention of calculus by Newton and Leibniz in the seventeenth century, the development of
mathematics and physics has accelerated to this day. Kant put his finger on the source of this stunning
revolution: the use of rules to harness the powers of human intuition.

Precision in science requires precise standards and conventions, in short, precise rules in both
empirical and theoretical domains. The coevolution of physics and mathematics has been driven by
invention and application of new rules to shape human intuition and model the physical world. The
tools of technology from simple hand tools to complex machines were obviously invented. Likewise
the tools of mathematics were invented, not discovered; though it may be said that theorems derived
from structures built with those tools are discovered.

The vicissitudes of mathematical invention are evident in the motley assortment of mathe-
matical tools used by physicists today, from vectors and matrices to tensors, spinors and differential
forms. Far from exhibiting the unity and richness of mathematics, these “tool kits” contribute redun-
dancy, inefficiency and obscurity [21]. A more coherent and powerful system of mathematical tools
explicitly designed to integrate algebra and geometry is already well developed with a huge range of
applications. Few physicists and mathematicians know about it, so an introduction to the literature is
appropriate here, especially as it supports the present thesis of mathematics by design!

Kant himself contributed to the rule-based developments in mathematics. He was the first to
formulate the abstract commutative and associative rules for addition (published by his mathemati-
cian friend Johann Schultz). Within the next century, Hermann Grassmann and W. K. Clifford pro-
vided foundations for integrating geometry, algebra and calculus into a universal geometric calculus
that is developing with renewed vigor today. A history of geometric algebra and calculus is given in
[20]. Its implications for the design of mathematical tools to simplify and unify the physics and math-
ematics curriculum are discussed in [21]. Extension to modeling spacetime, quantum mechanics and
gauge theory gravity is given in [22,23].

To the question: “What is man?”
Avristotle answered: “Man is a rational animal.”
Anthropologists observe: “Man is a tool-making animal.”
Modeling Theory suggests: “Man is a modeling animal!” Homo modelus!
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EDUARDO JOSE BAYRO-CORROCHANO
Geometric Computing for Cybernetics

Summary

In this talk we present an advanced new mathematical framework, the confor-
mal geometric algebra for applications in computer vision, graphics engineer-
ing, control engineering, robotics and machine learning. We will show that this
mathematical system keeps our intuitions and insight of the geometry of the
problem at hand and it helps us to reduce considerably the computational burden
of the problems.

Surprisingly, as opposite to the standard projective geometry, in conformal ge-
ometric algebra we can deal simultaneously with incidence algebra operations
(meet and join) and conformal transformations represented effectively using
spinors (a kind of quaternions, dual quaternions, etc). In this regard this frame-
work appears promising for dealing with representation, kinematics, dynamics,
projective geometry and Riemann differential geometry problems without the
need to abandon the mathematical system (as current approaches). We present
some real tasks of perception and action treated in a very elegant and efficient
way: body—eye calibration, 3D reconstruction and robot navigation and visu-
ally guided 3D object grasping, walking pattern generation and biped walking
control making use of the directed distance and intersections of lines, planes
and spheres both involving conformal transformations. For tracking, we use the
Motor (dual quaternion) extended Kalman filter and for control problems we
reformulate the differential geometry and the Jacobian based control rule for 6
D. O. F. robot arms using conformal geometric algebra. At the final part of the
talk we will also present the design of an applications of geometric neural net-
works, geometric NGAS and the Multi-vector Support Vector Machines (gen-
eralization of MIMO SVMs) useful for learning in visual guided robotics and
medical robotics. We will comment our current work on geometric spike neu-
rons to system identification and control for humanoid behavior control.

The lecturer believes that the framework of geometric algebra can be in general
of great advantage for applications in image processing, graphics engineering,
stereo vision, compressed sensing, deep-learning, range data, laser, omnidirec-
tional, laser and odometry based robotic systems (robot manipulators, mobile
and humanoids), kinematics and dynamics of robot mechanisms, cognitive ro-
botics, and advanced nonlinear control techniques.
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STEPHEN J. SANGWINE

MATLAB toolbox for Clifford Algebras

Summary

MATLAB is a powerful numerical computing environment oriented towards
manipulation of matrices and vectors (in the linear algebra sense, that is arrays
of numbers).

The author (with Nicolas le Bihan) developed a quaternion toolbox for
MATLAB in 2005 (QTFM), subsequently extended, and downloaded from
Sourceforge over 10,000 times. This toolbox includes Fourier transforms, ma-
trix decompositions including LU, QR, SVD, and the eigenvalue decomposi-
tion, as well as operations for signal and image processing (one of the original
aims of the toolbox).

In 2013 development started on a Clifford toolbox along similar lines. The new
toolbox can be initialised to any Clifford algebra with signature (p, q, v) where
p, q,r are the numbers of basis elements that square to +1, —1,0 respectively.
A very powerful feature of the toolbox is the ability to iterate over Clifford al-
gebras by re-initialising the toolbox signature inside a loop. This does not de-
stroy existing variables, but checks are performed to ensure that variables are
not used unless their signature matches the current signature. It is thus possible
to explore whether particular algorithms will work in all algebras, or only in a
subset. As with the QTFM toolbox, it is designed to work just like Matlab, so
that the powerful colon notation and square bracket concatenation works with
multivector arrays. Overloading of MATLAB function names means that oper-
ations on multivectors are carried out with the same function names as opera-
tions on real or complex arrays.

The fundamental structure of the toolbox is now complete, and some steps have
started on implemented high-level algorithms, beginning with the LU decom-
position and the matrix inverse. The toolbox inherently treats matrices of mul-
tivectors, and the components of the multivectors may be complex (this follows
from the fact that ordinary numbers in MATLAB are by default complex). Since
the underlying numeric operations are implemented by MATLAB, calculations
are vectorised (that is implemented using processor-level parallelism), giving
fast performance. Care has been taken to represent multivectors internally so
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that zero components are stored as empty arrays — avoiding needless multipli-
cations by zero and wasted storage (important if large matrices are manipulated
in a high-dimensional algebra).

The talk will include live demonstrations of the toolbox capabilities.
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LEO DORST

Projective Transformations as Versors

Summary

Whenever | introduce people in machine vision and computer graphics to the
wonders of conformal geometric algebra (CGA) to describe the Euclidean rigid
body motions and similarities, they always ask: ‘Can you also do projective
transformations?’ In those fields, projective transformations expressed in 4x4
homogeneous coordinate matrices are the standard, giving a nice integration of
pinhole projective imaging and Euclidean motions. The naturally transforming
conics are the usual primitives in many geometric modeling packages, and used
to understand the real world data. CGA, with its spheres and circles, feels much
too restrictive to them.

Our answer should be “Yes, we can!’, because we are of course convinced that
geometric algebra can do all of geometry, elegantly, compactly, and advanta-
geously. So, it is time to get specific, or we will lose credibility. Currently, there
appear to be two proposals:

e Goldman [3] uses R** to transcribe the 4x4 matrices into rotor form, fol-
lowing the general framework of [1]. He gives the bivector generators of all
standard projective transformations, but has to employ some unusual con-
structions to incorporate projections. The 28 degrees of freedom in the ro-
tors are not all used, and the geometrical meaning of the blades and in this
model is unclear.

e One can explore the accidental group isomorphism between the groups
SL(4) and Spin(3;3) to represent the homogeneous coordinate matrices. Kla-
witter [4] has recently shown how to convert a versor from R33 to a 4x4
matrix, and vice versa. His approach is coordinate based, and the bivector
generators of standard projective transformations are unfortunately not
made explicit. He points out that the blades are line complexes (and thus
unfortunately not conics).

My presentation exposes the R33-bivectors of the canonical projective trans-
formations, thus bringing the R332 model of Klawitter closer to the practical
flavor exhibited Goldman’s work on R**. While doing so, we develop some
geometrical and contextual insights in the R3>3 model (the ‘space of lines’),
showing how the cross ratio and duality are represented [2]. We briefly treat the
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geometrical meaning of its blades, and how this affects modeling reality. Conics
do appear briefly and strangely.

As | started to investigate R33, | was hoping that it might give us an ‘oriented
projective geometry’ [5] in which we can compute consistently with directed
lines, a capability that would be very useful in machine vision and computer
graphics, but currently lacking. I will show why this unfortunately fails: the odd
versors that would make reflections explicit actually do something else (and
rather useless).

Summarizing, neither R** nor R3?3 are quite what we would like to present to
the practitioners.

More work is needed, and soon!
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ANTHONY LASENBY

Geometric Algebra as a unifying language for Physics and Engineering
and its use in the study of Gravity

Summary

The aim of the first part of this lecture is to give an overview of the ability of
Geometric Algebra (GA) to provide a unifying mathematical language for Phys-
ics and Engineering. Examples from several different fields will be given, in-
cluding electromagnetism, rigid body dynamics, quantum mechanics and signal
processing, and it will be shown how the availability of this common language
aids in being able to work on advanced problems in multiple areas, emphasising
common aspects and aiding geometrical intuition in each.

Then in the second half of the lecture, we specialise to the area of gauge theories
and gravity, with the aim of showing that when equipped with an understanding
of GA, hitherto apparently difficult subjects such as General Relativity, can be-
come quickly accessible using the same GA techniques needed in engineering
applications. In particular, we show how General Relativity can be regarded as
a gauge theory in flat space, and suggest how an extension of the symmetries
which are gauged can lead to a novel theory of gravity, with potential implica-
tions across a wide range of phenomena.
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DAVID EELBODE, ECKHARD HITZER

Fourier Transformations in Conformal Geometric Algebra

Summary

Conformal geometric algebra is very popular in applications of geometric alge-
bra [1]. In recent years research and application of Clifford Fourier transfor-
mations is also flourishing [2]. Therefore the natural question is asked for the
appropriate form of Fourier transformations in conformal geometric algebra. It
seems suitable in a first step to select the bivector square roots of minus one
[3,4] in the kernel construction. Moreover the question is for the proper scalar
function of the position and frequency vectors in an exponential kernel. We ba-
sically suggest to use the inner product of conformal points, and investigate the
consequences of this choice. Interesting strong relations to linear canonical
transformations [5], such as the Fresnel transformation are explained. Then sev-
eral standard properties of the thus established conformal geometric algebra
Fourier transform (confFT) are shown. We further intend to discuss eigenfunc-
tions, carefully taking the non-commutativity of conformal object signal func-
tions and the confFT kernel into account.
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RAFAEL F. LEAO, WALDYR A. RODRIGUES JR., SAMUEL A. WAINER

Concept of Lie Derivative of Spinor Fields. A Geometric Motivated Approach

Summary

Using the Clifford bundle (C4(M, g)) and spin-Clifford bundle (Cé’spinle’ ,(M, g))
formalisms, which permit to give a meaningful representative of a Dirac-Hestenes
spinor field (even section of Clsping , (M, g)) in the Clifford bundle, in this lecture
we give a geometrically motivated definition for the Lie derivative of spinor fields
in a Lorentzian structure (M, g), where M is a manifold such that dim M = 4
and g is Lorentzian of signature (1,3). Our Lie derivative, called the spinor Lie

8
derivative (and denoted £¢) is given by nice formulas when applied to Clifford

and spinor fields, and moreover £¢g = 0 for any vector field £&. We compare our
definitions and results with the many others appearing in the literature on the
subject.
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PIERRE ANGLES

Geometric algebras and spinors

(Dedicated to the memories of Pertti Lounesto, Jaime Keller and Artibano Micali)

In these days the angel of topology and the devil of abstract
algebra fight for the soul of each individual mathematical do-
main.

Hermann Weyl, Invariants, 1939, Gesammelte Werke, Band llI,
page 681.

Summary

The lecture will be divided into three parts.

The first one is devoted to the structure of the Clifford algebra and will deal
with all the main mathematical content of Clifford algebras.

After a short presentation of the history of Clifford algebras, we will
analyze the concept of an algebra. As pointed out by Nicolas Bourbaki,
W K. Clifford introduced the algebras known as Clifford algebras and proved
that they are tensor products of quaternions algebras or of quaternion algebras
by a quad-ratic extension.

Elementary properties of quaternion algebras will be recalled. Basic definitions
and properties of Clifford algebras will be given. The construction of a basis
will be studied. Standard classical properties will be given. The covering
groups for the standard orthogonal group, the special orthogonal group, the
connected component of the identity of the orthogonal group of a regular quad-
ratic finite dimensional space over R or C will be given. Clifford algebras for
standard pseudo Euclidean spaces will be studied.

The second part deals with spinors in contemporary physics. We give the ter-
minology and deffine Dirac Spinors, Weyl Spinors, Majorana Spinors, Weyl
Majorana Spinors. The language of physicists concerning spin groups, spin
bundles and spin connections will be studied. The links between spinors and
the fun-damental interactions will be analyzed.
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The third part is devoted to a few comments on Spinors in Minkowski space-
time. Spinorial coordinates, the Weyl Spinor space, dotted spinors , spinor ten-
sors, Dirac spinors, Dirac Matrices, Chirality, Charge conjugation and
Majorana Spinors are successively presented.

The conclusion will be a look to the algebraic foundation of the theory of
twistors and a short analysis on the epistemological level of the importance of
Geometric Algebras.
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CHRIS DORAN

Game theory: From Black Holes to Battlefield 4

Summary

In 2005 Dr Doran cut short his academic career studying applications of
geometry algebra to take on the challenge of building a company. The initial
hope was to commercialise geometric algebra in some form, though that proved
to be challenging. Instead the company he formed, Geomerics, focused attention
on solving problems in real-time graphics with emphasis on lighting. Geomerics
technology is now used in some of the most popular games on release, as well
as being the default technology in the most popular game engine in use today.
In late 2013 Geomerics was acquired by the chip-design company ARM,
completing the journey from spin-out through growth to exit.

In this talk we discuss the practicalities of building a company based on
mathematical know-how; the challenges of turning this into practical products;
considerations around funding and investors; and working with a team of
commercial software engineers. The talk covers some of the recent history of
the games industry and highlights some of the key topics in graphics research
today where geometric algebra should have an impact. The talk ends with a
discussion of what the geometric algebra community needs to do to increase its
impact in the wider world, and how we can take advantage of modern media
techniques to achieve this.
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ABSTRACT. We introduce a method for evaluating integrals in geometric calculus
without introducing coordinates, based on using the fundamental theorem of calculus
repeatedly and cutting the resulting manifolds so as to guarantee the existence of a
boundary and an antiderivative at each step. The method is a direct generalization of
the usual method of integration on R. It may lead to both practical applications and
help unveil new connections to various fields of mathematics.

1. INTRODUCTION

One of the main selling points for Geometric Algebra and Calculus [1-10] is the claim
that it allows carrying out computations in inner product spaces without resorting to co-
ordinates. Indeed, there exist well developed methods for simplifying algebraic state-
ments and solving equations, computing the vector derivative and the multivector de-
rivative, and finally for developing a theory of directed integration, all in a coordinate
free manner. However, when it comes to actually computing the value of an integral,
a coordinate system is invariably introduced [4, 5, 11]. This paper takes key steps
towards remedying this.

In calculus on R, definite integration is usually carried out by finding an antiderivative
or an indefinite integral of the function to be integrated, and then applying the funda-
mental theorem of calculus to obtain the desired definite integral. The fundamental
theorem of geometric calculus [4, 12], a version of which can be expressed as

(1) /d’”xaMF:/ d"x F,
M oM

where d; is the vector derivative on the manifold M, provides a tool to do the same in
any number of dimensions, for functions with values in the geometric algebra.

Let us briefly recall the main elements in (1). In a directed integral, the integration
measure d”x is an m-vector valued element of the tangent algebra of M, analogous
to the volume form in the theory of differential forms. When M is embedded in a
higher dimensional manifold, the directed integral therefore carries more information
than the usual integral with a scalar valued measure, including information about the
orientation of the manifold that the integral is over, weighted by the integrand.

The vector derivative on a manifold, dy, is a vector-valued derivative operator, and so
in addition to taking derivatives it acts algebraically as a vector. On a manifold, it only
considers differences along the manifold, but note that the result of the derivation can
take values in the full geometric algebra, so it is distinct from the covariant derivative.
In coordinates, one can define dyy = ¥; pr(e")%, where py, (a) is the projection of
the vector a to the tangent space of the manifold at point x. In what follows, we usually
suppress x in the notation, and also M where the manifold is clear from context.

For example, assume we are integrating a function f(x) over a d-dimensional subset
M of RY, which is sufficiently smooth to satisfy the assumptions of the fundamental
theorem and has a finite number of connected components. The first step is to find an
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2 COORDINATE FREE INTEGRALS

antiderivative Fj (x) of f(x), i.e. dyFi(x) = f(x) for all x € M. Now we get, according
to (1), an integral over the d — 1 dimensional boundary dM of M. We’d like to use
the fundamental theorem again, and so we look for an antiderivative F>(x) of Fj(x)
on the boundary dM with respect to the derivative dy,, on the boundary. Given an
antiderivative F>(x) we run into the problem that the boundary of the boundary of a
set is always empty. We move forward by making an incision of the boundary, i.e. we
choose a set E» such that M \ E; has a smooth boundary dg,dM = d(dM \ E»), and
vol(E;) < &. Now the integral

d—2
) /a R

differs from our desired integral by at most vol(E>)sup, g, |F>(x) || Notice that we
have to choose F> and E; such that F; is continous in dM \ E3, in order to justify our
use of the fundamental theorem. This requirement is actually crucial, since any finite
value of the integral as we shrink € to zero comes from what are essentially branch
cut discontinuities in the antiderivative. Indeed, due to the presence of branch cuts, we
could not have found F(x) on the whole manifold, giving a second reason why the
incision is necessary.

We then simply repeat the same construction d times, at each step requiring that for
incision E, the volume vol(E,) < &, and that each antiderivative is continous in the in-
tegration set. In the final step, the integration will be over a one-dimensional manifold,
which simply has a finite number of points as a boundary, leaving us with a finite sum
of values of the dth antiderivative. Then as we let all of the g,’s go to zero, we get our
final result.

As will be shown via examples, this method allows computing integrals without in-
voking a coordinate system. However, we will find in all practical examples that we
do need to invoke reference vectors or multivectors, and the expectation is indeed that
this will turn out to be generic, as the reference multivectors provide a mechanism for
choosing a specific antiderivative.

We expect that this method of integration will open up new possibilities in analyzing
any integral or differential systems in n-dimensions. This includes the theory of partial
differential equations', numerical estimation methods for integrals, and also connec-
tions to algebraic geometry, since it becomes possible, at least in principle, to handle
all aspects of surfaces expressible as algebraic equations in a coordinate independent
manner.

In this paper, we first prove that when the requisite antiderivatives and submanifolds
exist and satisfy a number of reasonable properties, the above construction indeed gives
the desired result. We then give some examples of elementary integrals worked out
according to the method. Finally, we elaborate on possible implications and directions
for further research.

2. INTEGRATION BY ANTIDERIVATIVES

Let us briefly recall some definitions and establish some notation.

Our basic notation follows that used by [13]. We use the left- and right contractions
| and | instead of the single dot product, our scalar product contains the reverse, A
B = (AB), and our dual is a right multiplication by the pseudoscalar. The norm on a

geometric algebra is defined as ||A||> = A xA = (AA). Although our method generalizes

'When such equations are expressed in geometric calculus, we follow [4] in considering this a mis-
nomer, and prefer the term vector differential equation.
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COORDINATE FREE INTEGRALS 3

easily to the case of mixed signatures, we will for simplicity consider here only spaces
where the inner product is positive definite, and so the multivector norm defines a
well-behaved concept of convergence.

Since the directed integral of a multivector function can always be expanded in a mul-
tivector basis in terms of scalar coefficient functions, we can import the concept of
integrability from scalar valued integrals:

Definition 1. A function f : M — 9(x) is L- integrable in the sense of the directed
integral on M if each of the scalar functions a’ (x) * (H ) (x)) are L-integrable on M

with the measure ||d" x||, where a/(x) is a multivector basis [4] of %(x), and L is a
definition of integrability for scalar valued functions, such as Riemann or Lebesgue.

In what follows, we will simply refer to integrability, and by that mean integrability in
the sense of the directed integral based on a suitable definition of scalar integrability.
For all the theorems and examples in this paper, the Riemann integral will be sufficient.

We write vol(M) for the volume of a manifold in the appropriate dimension, i.e. for
dim(M) = 2 the volume is the area, and so on.

For completeness, let us recall the definition of the tangent algebra and the vector
derivative [4]:

Definition 2. Let M be a Euclidean vector manifold [4]. Then the tangent algebra
of M at x € M, denoted by %y(x) is the geometric algebra, i.e. real Clifford algebra,
generated by the tangent space T,M.

Definition 3. Given a vector derivative dy; on an orientable vector manifold M and an
orientable submanifold N C M and a unit pseudoscalar of N, Iy(x) € 9 (x), for each
X € N, the projected derivative dy is given by [4]

d
3) v =pn,(9) = ZPNx(ei)ei Oy = ZpNx(ei)E’

where py, (a) = Iy(x) "' (Iy(x) | a) is the projection of a vector a to the tangent algebra
of the manifold N at x € N, and ¢; is a basis of the tangent space T,.M.

Note that the partial derivative operator does not operate on the pseudoscalar Iy(x),
and also that the projected derivative can take values in the full tangent algebra of M,

not just N. Then one version of the fundamental theorem of calculus can be expressed
as [4, 12]

Theorem 1 (Fundamental theorem of calculus). Let M be an oriented m-dimensional
vector manifold with a boundary dM that is a vector manifold, f a differentiable func-
tion f: M — %y (x), and dy the vector derivative on M. Then

4) / d"x Oy f(x / dmx

We will only consider this form, with the pseudoscalar measure to the left of the inte-
grand, in this paper. Let us prove a simple lemma:

Lemma 2. Let M be an oriented m-dimensional vector manifold and f : M — %y (x) be
an integrable function from the manifold to the algebra. Given a bounded submanifold
E C M such that f is bounded in E, then

(5) < vol(E) sup|| f(x)|

xekE

d"x f(x) /dmxf

M\E
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4 COORDINATE FREE INTEGRALS

Proof. Direct calculation using the triangle inequality:

d"x f(x) /dmxf H/(f"xf /Hd"xf
M\E
© = [l < [ el supll ]| = volE)supl| (o).
E E x€E X€E
Note that the supremum exists and is finite since E is bounded and f is bounded on
E. U

The point of Lemma 2 is that it allows us to cut out a part of the manifold in order
to guarantee that it has a boundary, and still keep control of the error we’re making.
Also, we will find out that usually functions on manifolds without boundary do not
have single valued antiderivatives, and the lemma allows us to exclude a branch cut,
since the existence of the antiderivative is only necessary on the part of the manifold
that is not cut.

Definition 4. Let M be a vector manifold and f : M — %;(x) be a function on the
manifold. If f has an antiderivative F on M, we write F =: d,,' f. If d,,;' f again has
an antiderivative on N C M, we denote that by 8];12 , and in general we write 8A7[I”M2m m,
for the nth antiderivative of f on the manifold M,,, if it exists, with M| C M, C ... C M,,.

Note that due to the projection operator in the derivative on a manifold, the antideriva-
tive in general depends on the manifold in which it is defined. In other words an anti-
derivative on a submanifold is not necessarily just the restriction of some antiderivative
on the full manifold. Also, in the above definition the antiderivative is ambiguous, so
when using the notation we have to either define how to choose a specific antideriva-
tive, or show that our results don’t depend on the choice.

Now we get to the main result:

Theorem 3. Let M be an m-dimensional orientable vector manifold, and f : M —
9y (x) an integrable function. If there exists a sequence of orientable manifolds Ny C
Ny C ... CN,, =M and a sequence of bounded sets E; such that

e if IN;1| # &, N; = dN;y1, otherwise N; = d(Niy1 \ Ei+1), where Eiy| is a
bounded set such that the boundary d (N1 \ Ei11) is a non-empty vector man-
ifold, and 8N mit] v, is integrable and bounded on Ei .

e there exists an annderlvanve 8 mtl f on N;, which is bounded.

e Ny is a finite set

then the integral of f over M can be computed by evaluating the nth antiderivative on
N().'

X;ENp

(7) ’/ d"xf a];o’meS,'f(x,’) <eg,

(9]\2"17(,,’” (x) H Y.; 6i, and the signs s; € {—1,1} are determined
by the orientations of the boundaries at each step.

where € = max; sup,cy.

Before proving the theorem, we make a few remarks. We basically forced the theorem
to be true by sticking all the difficult parts into the assumptions. Note however that
the local existence of an antiderivative is guaranteed for a differentiable function [11,
12, 14], and also that the set Ny is automatically discrete since it’s the boundary of a
I-dimensional manifold, and with very mild assumptions on M the E; can be chosen

32



COORDINATE FREE INTEGRALS 5

such that Ny is a finite set. In essence these assumptions allows us to prove the theorem
without getting mixed up in topological complications, and for most practical applica-
tions the natural choice of the sets N; will anyway fulfill these assumptions, which is
why we’re not interested in sharpening the theorem at this point.”

Proof of theorem 3. First note that since the integral of a bounded function over a
bounded set is finite, each of the supremums in the expression for € exist. The only
part left to prove is the inequality. Using the fundamental theorem, Lemma 2 and the
triangle inequality, we first compute

/(f"xf(x)— Z o N, Sif (Xi)
M X €Ny

= Md"xf(x)— e 1dxal\,lerlf(x)
= | [ s [ o ()

dxaNm—i-lf / dxaNlm-H f( )

< H/d"xf /delmNm()
o, SR / dxdy ™) £(x)
< H/ &' )~ [ gL r
(8) +vol(E) ) sup ||dy. mﬁ,}nf(x)H.

xeEq

Note that since two antiderivatives differ at most by a monogenic function y for which
IN, V¥ (x) = 0 [4], this result is independent of the choice of antiderivative.

We can then continue using similar steps, each of which produces an approximation

error Vol (E;) sup,c . Nm;(,l until finally at the m’th step, we get
©) H/ £ - [ o, £+ L vol(E; sup a5zt 0|
M Npn i xeE; "

where N,, = M and 8181 f(x) is the function itself, and so the integral term is zero.
Approximating the the supremums by their maximum concludes the proof. U

There is a simple corollary;

Corollary 4. Let M be a vector manifold without a boundary, and f : M — 9y (x) be
a bounded integrable function such that its integral over M is non-zero. Then any anti-
derivative 81‘}1 f of f must have a branch cut discontinuity which divides the manifold
into at least two parts with non-zero volumes.

2Since in many applications there may be a branch cut that goes to infinity, relaxing the assumption
about E;’s being bounded would be beneficial, allowing to compute also such integrals when they are
finite. This would entail finding a sufficient set of assumptions to guarantee that [ dy. ’"ﬁ; f goes to

zero as the set E; shrinks to zero. In specific cases this should not be difficult.
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6 COORDINATE FREE INTEGRALS

Proof. Assume the opposite, that is, that there exists an antiderivative of f on the
whole of M. Then we can make a cut according to theorem 3, and let its volume
shrink to zero. Since the antiderivative of a bounded function is bounded (which can
be seen, for example, by considering the scalar components and applying the usual
theorems of integration), this means that the result of the integration is zero. This is a
contradiction. 0

In particular, this means that the norm of the volume form on a manifold without
boundary cannot have an antiderivative everywhere. Also, since every function on a
manifold is an antiderivative of it’s own derivative, this corollary may have some links
to the hairy ball theorem.

Note also that even though the method is phrased in terms of the directed integral, it
is immediately applicable to the usual integral with a scalar measure. We simply write
|d"x|| f(x) = d"xI(x)f(x), where I(x) is the unit pseudoscalar of the manifold at x.

In order to do a specific calculation, we find the necessary antiderivatives and sets to cut
out by any means we like, and then using theorem 3, we can rest assured that as we let
the volume of the incisions E; go to zero we get the exact value of the integral. Note that
since the errors are additive, the order of the limits for the various sets doesn’t matter
(unless their construction dictates a specific order). Of course, we have only proven
that if this construction can be made, then we can do the coordinate free integral. Let
us next present some examples to show that such constructions indeed do exist.

3. EXAMPLES

Next we compute examples of applying this method of integration. Since these quite
trivial examples already show many of the features we expect to encounter in more
generic cases, we work them out in detail. The algebra and rules for computing deriva-
tives needed in this section are contained, for example, in [4, 5, 13, 15].

3.1. The area of a disk. As the first example of application of the method, we calcu-
late the area of a disk of radius r in R2. The integral we intend to compute is

(10) AB,:/ d’x,
B,

where B, = {x € R?: ||x|| < r}. Note that since the directed volume element dx is a
bivector, we expect to get the result as a bivector. The first step is to find the antideriva-
tive of the constant function 1. This is by inspection %x, since in general the derivative
dyx is mx, where m is the dimension of the manifold [4, 15]. Therefore, the integral is

reduced to

1
(11) E/Sl dX)C,

where dx is the vector-valued measure on the circle. Now the projection of a vector a
to S! at point x is pgi (a) = x~'(x Aa). Intuitively, we see that the integral to calculate
measures distance along the circle, i.e. the angle. So does the complex logarithm, and
so we are led to the try the function log(xxg), where x is an arbitrary constant vector
in 9(R?), and since xxy is in the even subalgebra of %(IR?) which is isomorphic to
the complex numbers with the unit pseudoscalar I, acting as the imaginary unit, the
logarithm may be defined analogously to the complex logarithm.

In order to compute the projected derivative, we observe that in general dy f(x) =
du(a|dy) f(x), where d is the full vector derivative without the projection, and the
overdot denotes that derivative dy; acts only on a. Then, using the chain rule and the
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COORDINATE FREE INTEGRALS 7

fact that the derivative (xxg) * d; reduces to the directed derivative in the direction xxg
[15], which further reduces to the complex derivative times xxy since the direction
commutes with the argument, we can further calculate

dgilog(xxg) = dgi (x0) * 9,108 2| ;—xxy = It (4%0)2 " |s=xy

X0X _
(12) = x5 =x
o |
where the overdot limits the scope of the derivative to the dotted objects, as in [4]. We
observe that 851x2 =0, as expected, and therefore deduce immediately that 331 %xz log(xxp) =

%x, which is our antiderivative. The boundary of S' is empty, but according to our

Y

method we cut a small segment, for example the part where % > cos € which is the
part at an angle less than € to xg. The complex logarithm function is bounded away
from zero, and our incision is bounded, so the assumptions of theorem 3 are satisfied
and we calculate

11,
(13) | Wpx=ox 10g(xx0) | xea (s1\ {x: =0l <e})-

Let us choose the branch of the complex logarithm such that log(xxo) |x=x, = log||xxo || +
0l,. We observe that since the antiderivative must be continuous inside the set where
we made the cut, we must then allow the logarithm to approach the value log||xxo|| +
27l on the other side of the cut. Therefore the subtraction results in A = ril, as
expected.

3.2. The volume of a cylinder. Let us do an example in three dimensions. Let M be
the cylinder defined by the equations

(14) LAx = 0
(15) (@) < 77
(16) 0< (0 Yowrx))|(0h) < h,

where @ is a unit bivector determining the plane orthogonal to the axis of the cylinder,
r and h are positive real numbers, and /3 is the pseudoscalar of the 3D space in which
the cylinder lies. Eq. (14) guarantees that the cylinder is in the space determined by
I3 and effectively reduces the problem to three dimensions, whereas Eq. (15) sets the
radius of the cylinder. Eq. (16) sets the height of the cylinder.

E{@\

FIGURE 1. The cylinder to be integrated.
The red translucent part is the chamfer which
rh we cut away before the first integration. Note
that while it’s surface does not have a pseu-
doscalar defined everywhere, the volume it-
J self does. The bottom and top of the cylinder
are in the plane defined by the bivector .

In this case, the cylinder has a sharp edge, which would, after the first integration,
contradict the assumption that the pseudoscalar of the surface exists everywhere. Let
us therefore this time use lemma 2 to cut a circular chamfer of radius € to the edges,
such that the remaining manifold is smooth. The chamfer has a volume proportional
to £2. Note that in all three parts the 3D pseudoscalar is well defined everywhere.

The first integral is again trivial, resulting in %x, since the cylinder is lying in a flat
space, and we are integrating the constant function. After this, we again use lemma 2
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8 COORDINATE FREE INTEGRALS

to ignore the surface of the chamfer, and only concern ourselves with the flat parts of
the surface integral. For the surface integral along the sides, we first observe that, with
f(x) = (w|x)? being the function which’s constant value surface f(x) = > defines the
side of the cylinder, and given a point x on the side, the projection of a vector a to the
tangent space is given by

(17) Pside(a) = (O (X))~ (9 f(x)B) | a = re(a) + Py (@),
where
(18) ro(a) =0 'Y(wAx) and Pyjo(a) = (x| o) (x|o)]|a

are the rejection from, i.e. part orthogonal to, @, and the projection to the direction of
the vector x| @, which lies in the plane of omega and orthogonal to x, respectively.

We find the antiderivative 9. x = xr,(x). This can be verified by taking the derivative
and using the facts that x = pg(x) + re(x), where pg(x) is the projection to @, the
fact that since the projection to the tangent space splits as in Eq. (17) then also the
derivatives split in the same way, and finally that d,x A a = dya — p(a), where d), is
the derivative projected with the projection p and d,, is the dimension of the subspace
projected to.

In order to do the final integral for the side along the boundary left by the chamfer cut,
which is a circle in the plane m, and at height 2 — € above the origin, we note that rg(x)
is simply the constant vector height along the circle and therefore also constant with
respect to the derivative on that circle, so we are left with integrating x = pg,(x) + 7 (X)
on the circle. Now pg(x) is on the plane of the circle, and therefore we know from the

disk example that the integral of the pe(x) -part will be 27| pe (x) H212 with [, = @

and H Po(x) H2 = r2. Integrating the constant produces x times the constant, and since
x is regular on the whole circle, the subtraction will produce 0. The other boundary
component is the circle along the bottom, where the calculation is identical expect
that now Hrw (x) H = €, and the sign is opposite since the orientation of the boundary is
opposite. The integral along the sides then total 23—”r2 (h—2¢) 15, where the pseudoscalar
I3 comes from the product of the bivector @ and vector rg(x).

The other boundary components are the caps on the top and the bottom. The projection
to the tangent plane is simply pg,, and therefore splitting again x = pg(x) + re(x), we
find the antiderivative

(19) dy'x= %pw(x)z—i—%pw(x)rw(x).

The half on the second term comes from the fact that the projection is two-dimensional.
We have to integrate this on the boundary of the cap, which is the circle at radius r — €
(since we cut the chamfer off the edge). The first term again integrates to zero, since on
the circle pg(x) is a constant, whereas the second term again reduces to the case of the
disk, and therefore produces % (r — €)?®rq(x), where we have inserted the 1/3 from
the first integral. The cap on the bottom is again the same, with this time Hrw (x) H =&,
and so putting the caps and the side together and letting € — 0 we get the final result

(20) / d’x = mrhl
cylinder
as expected.
4. CONCLUSIONS AND OUTLOOK
We have presented a method for computing integrals in m-dimensions without using

coordinates. Naturally, the level of freedom from using coordinates depends on how
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COORDINATE FREE INTEGRALS 9

the manifold and the integrand are defined. One purely coordinate free way is to de-
fine the manifold by solutions of m(x) = 0, where m(x) is a function of the vector x
constructed from geometric products of x with itself and some (possibly infinite) set of
constant multivectors A;, where the geometric relations between A; and x are known in
sufficient detail to allow carrying out all the necessary algebraic manipulations without
coordinates. Both of our examples are in this form.

In the examples, we integrate the constant function on two manifolds in order to com-
pute their volumes. The actual computations in these examples are not complicated
when compared to the same computation in coordinates, which for a fair compari-
son needs to take into account the derivation of the Jacobian in polar or cylindrical
coordinates. Further development of our method will indeed require building a com-
prehensive toolbox of systematic methods for finding antiderivatives of multivector
valued functions of vector variables on vector manifolds. While this program is still
in its infancy, we have found some rules with some level of generality: for example,
an antiderivative of f(||x||) in d-dimensions is simply W [ds s971£(s), where f(s)

is a scalar valued function of a scalar, and so the remaining integral is an ordinary
scalar integral. This rule is of course equivalent to integrating in a spherical coordinate
system, expressed in a coordinate-free way.

As an interesting note, in some examples which we have worked out but not reported
here, such as the volume of B, it is not necessary to actually find an antiderivative,
but rather one can find a function whose derivative differs from the desired one by a
function which can be seen to integrate to zero. We can then use such a function instead
of the antiderivative to still get the correct result. However, we will not comment on
this further before we understand the phenomenon in more detail. It may turn out to
be only a fortunate coincidence occurring in a limited number of cases, rather than
something that can be included in a general toolbox.

Let us indulge in some speculation concerning possible applications of the method to
more than just evaluating integrals in the few special cases where antiderivatives can
be explicitly found. Consider a function f(x) on a manifold M defined by m(x) =0
for some multivector valued function m(x) and with x in R?. In order to calculate the
integral of f(x) over M, the method involves finding the d-fold antiderivative of f with
respect to derivatives projected on M, and evaluating it on a discrete set of points on
the manifold. Therefore, at least in the final step, we only really need to know some
topological facts about the manifold in order to choose the points such that they are
all on the same branch of the antiderivative. Of course, the manifold also enters into
the calculation via the projections of the derivative operator. For the first integration
in the case where m(x) is scalar-valued the projected derivative is given simply by
(@m(x)I;) "' (dm(x)I;)| 9, where the first two o ’s affect only the m(x) ’s immediately
following them. Similar formulas can be worked out for more general m(x). Now, we
can use the Taylor series approximation for multivector functions [15] and approximate
both functions f(x) and m(x) by their Taylor series. If the antiderivatives of all the
monomial terms® can be explicitly constructed, then this should in principle allow for
a systematic series expansion for the values of integrals on a large class of manifolds, in
terms of integrals of the monomials. The theoretical connections to algebraic geometry
and topology should prove interesting.

3We need to also expand the inverse appearing in the projection, or to integrate a rational function of
multivectors, which cannot be done in quite closed form even for the real numbers, as the roots of the
polynomials need to be found in the partial fraction expansion.

37



10 COORDINATE FREE INTEGRALS

For (vector) differential equations the very same rules for finding antiderivatives that
are crucial for our method will be useful in finding closed form solutions in a coor-
dinate invariant way. In addition, similar series expansion methods as those outlined
above should pave the way to finding series expansions for solutions of vector differ-
ential equations, and may even aid in their numerical evaluation.

On a philosophical level, our method represents a further step into the direction of
establishing multivectors as geometric numbers, which can indeed be constructed, ma-
nipulated and interpreted in a wholly coordinate-free way. Beyond that, we believe
that these speculations do not exhaust the potential applications of the method.
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One of the experimental procedures used to determine the tridimensional structure of a protein
molecule is the nuclear magnetic resonance (NMR). This technique provides a set of distances
between nearby atoms, which can be used to obtain the cartesian coordinates of all atoms. This
problem is known as the Molecular Distance Geometry Problem (MDGP) [5]. Differently from
the continuous optimization approach, often applied to MDGP, where the search for a single
solution demands a high computational effort, our proposal is to develop methods based on a
combinatorial approach. In this case, the search domain can be reduced to a discrete space
having the structure of a tree [4]. We refer to this class of problems as the Discretizable Molec-
ular Distances Geometry Problem (DMDGP). An advantage of this approach is the possibility
of finding multiple solutions. When the distance information provided by the NMR experi-
ments is given through a list of lower an upper bounds, that is, inexact distances, the problem
is also referred as the interval DMDGP (iDMDGP). An interval Branch-and-Prune (iBP) algo-
rithm has been developed over the past years, and is able to find multiple solutions for a given
instance [2].

A difficult that arises from the discrete approach is the choice of the number of times we split
a given interval. A small number can lead us to an empty set of solutions and a large number
could lead to huge number of solutions, where many of them are very similar to each other.
For this reason, we decided to take advantage of the geometric interpretation of the iDMDGP,
as a search for sphere intersections, and apply Clifford algebra tools to reduce the interval
distances. Preliminary results can be seen in [1] and in the recent work [3] we also show how
Clifford algebras can be useful in interval reduction.
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ABSTRACT. We derive a spinor representation of spin-1 for Clifford algebra (1,3) (or Cl; 3) by
using isomorphism C/; 3 = SO (1,3) for both (1/2,1/2) and (1,0) & (0, 1) Lorentz group rep-
resentations. The relationship between the two representations is found to be analogous to the
relationship between the electromagnetic gauge field A* and the electromagnetic field strength
tensor F*V. Similar to the relationship between A* and F*V, the two representations can be
unified by one formula u(p,A) = ¢ A p/m. We observe that there is a correlation between these
spinors and Hestences Dirac spinors for spin-1/2 particles in Cl; 3. We also discuss that the
Grassmann basis obtained from spin representation of Clifford algebra provides more conve-
nient basis for spin-1 spinors especially for (1,0) @ (0, 1) Lorentz group spinor representation,
although the Clifford basis is better for spin-1/2 and (1/2, 1/2) spinor representations of Clifford
algebra. The work by Winnberg for a superfield of spinors of Clifford algebra offers a physical
meaning to Grassmann variables.

1. INTRODUCTION

We begin with Hestenes’s description of Dirac spinors with projection method [1] in projective
spin-1/2 representation group (1/2,0) & (0,1/2). We use the isomorphism between CI; 3 and
SO™(1,3) groups in order to write down Polarization vectors ((1/2,1/2) spinors) with Clifford
numbers and show that these spinors can be expressed in terms of Hestence’s Dirac spinors. We
find that (1,0) & (0, 1) spinors can be given by u(p,A) = ¢(p,A) A p/m as the vector potential
field A;, and the field strength tensor Fyy are related to each other. The expressions of these
spinors in Standard representation of SO(1,3) and SU (2) group for spin-1 with Weyl represen-
tation are presented in Appendices (A) and (B), respectively. We discuss that the Grassmann
basis or Witt basis [2] may be the better choice of basis for the spinors with chiral representa-
tion with coordinates in sphereical harmonics form in comparision with the Clifford basis. We
also present the relation of polarization vector and (1,0) & (0, 1) spinor with gauge fields and
discuss how they are connected with local coordinate transformations.

2. CLIFFORD ALGEBRA

This section is about the definition and some properties of Clifford algebra. The Clifford algebra
Cl; , over R is an associative algebra having [ +n generators Y1, %, ..., %, Yi+1, ---Yi+n such that

The interior product and the exterior (wedge) products of @ and b are

ab+ ba
b= —+—+
4 2
and
ab — ba
ANb=——
“ 2
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2 CONSTRUCTION OF CLIFFORD REPRESENTATION OF SPIN-1 SPINORS

from adding and subtracting these two equation, we find that Clifford product is

ab=ab+aNb
and
ba=ab—aNlb.
The volume element for the {;} frame is
(1) L=1ARA A%
We also have a reciprocal frame {y'} defined by
() Y.y =8, Vi,j=1,....n.
The reciprocal frame can also be constructed as
3) Y= () ""MABACATIA AR

where the check on ¥; states 7; is missing form the expression.

2.1. Clifford Algebra (1,3) and Grades. Clifford algebra (1,3) is basically a Clifford algebra
with Minkowski metric yg = 1,1/12 = }/22 = 73? = —1 and ¥;y; = —v;%. Itis represented as Cl; 3
shortly and our metric is defined as g"V = y*.y". Because of its geometrical properties, C; 3 is
also called as Geometric algebra and each Clifford number has been given a geometric meaning.
Moreover, these numbers can be used as position frame for a spacetime point. We have different
vector spaces which map to Real vector spaces as AKR with k=0,1,...,n when n = p+¢ in
Cl, 4. These different vector spaces make Clifford algebra a graded algebra as A = @,y A.
The Clifford algebra Cl; 3 is of 16 dimensions and has the basis consisted of

1 scalar AR

Y0, 1,72, 73 vector AlRA

Y01, %02, Y03, V23, 31, Y12 bivector AZR?

Y123, Y023, Y031, Y012 trivector ASR4
Y0123 volume element A*R* .

The whole Clifford Algebra(1,3) in terms of all grades or multivector structure is
Cli; =ROR'G AR @ AR @ A'RY.

General form of Poincare isomorphism can be written as M"Y ~ iy* A yV /2. For the rest of
paper, we write the wedge product of two Clifford numbers y* A ¥¥ in shortly as y*V. In
Clifford algebra, the Lorentz transformations can be performed by rotors which are written as

B . . .
R = e2, where B is a bivector and a short-hand notation for y*V. It transforms a vector v as

4) VvV =RwR™!,

1. _B
where R~ ! is e~ 2

(5) A’ =RAR™.

. This also can be applied to any multivector A

For rotations, the bivector B will be B = ¥;; where i, j = 1,2,3 with i # j and for boosts it is
B = —%i.

3. SPINORS

In our work, we will begin with Hestenes’ construction of Dirac spinors which can be also
seen as part of left minimal ideals. Then, we will construct spin-1 from component spinor
approach by associating each component of vectors with a Clifford number. We define the rest
frame spinors of (1/2,1/2) as vectors of Cl; 3 in cartesian representation of their spins and the
(1,0) @ (0,1) spinors are derived from polarization vectors such as u(p,A) = ¢ A p/m.
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CONSTRUCTION OF CLIFFORD REPRESENTATION OF SPIN-1 SPINORS 3

3.1. Primitive Idempotents and Minimal left Ideals. The mathematical definition of the left
minimal ideals is that , if / is a subset of S semigroup, / is a left minimal ideal of S if SI C [
and I # {} . In [5], it states that there is a non-scalar element % and > = 1 in the standard
basis Cl,, ;. We could set two left ideals as e = 3(1+7%) and f = 3(1 — ), where e+ f = 1
and ef = fe = 0. Thus, CI, , separates into two left ideals Cl, ;, = Cl, ;e ®Cl,, 4 f .

Theorem: There are k = g —r,_,, non-scalar elements yg = 1, such that 3;,%; = %, %, in the basis
of Cl, 4. They have order of 2% and

1 1
(6) f=z (1+%l) (1+%2> (1+%k)

This product of idempotents is primitive in CI,, ;. Therefore, the left ideal S = Cl,, ; f is minimal
in Cl, 4. In this theorem, r,_, is the Radon-Hurtwitz number and is given by

i|0 1234567
01223333

and the recursion formula in the Radon-Hurtwitz number is r; g = r; + 4.

3.2. Spin-1/2 Spinors and Hestences Projection Method. One of the methods that construct
spinors with Clifford algebra is using columns components of matrices as vectors (primitive
idempotent). The projection operators can be used seperate these components as In [3],
Hestenes uses U = 1/4(1 + 10)(1 + 03) projection for spinors. In this equation the factors
12(14 1) and 1/2(1 4 03) are energy and spin projection operators. However, in our notation
we express our spin operator as iy|, instead of ¢>. With this change our spinor of projective
spin representation of (1/2,0) & (0,1/2) would be

1 1
(7 u=§(1+}’0)§(1+i}’12)-

u represents a positive energy and positive helicity spinor. So, the other variant of spinors would
be

)]
= 20 ) (1 +i712), 1= (1+0)(1 = H2), 15 = (1= 10) (1 +i712), = 3 (1—10) (1~ o).
Note that
©) Your = uy, Youz = uz, Yousz = —us3, Yous = —U4
and
(10) IYiouy = uy, iYioup = —up, 1¥12U3 = U3, iY12Us = —Uy4.

Here, u, uy, us, and u4 are not the same spinors as the standard Dirac algebra, since each of
them are different projections and left minimal ideal operators only operates on between rows.
So we need to apply some operators on our original spinor u or u;. We will define two operators
to achieve other spinors; charge and spin raising and lowering operators:

1
(11) Q$:§(3F71—i72)

1
(12) ST = 5(1%34—‘?’31)-

These operators are also in moving frame so QT = RQT(0)R~! and ST = RST(0)R~!. We can
simplify them as

(13) 0=0"+0", S=ST+4+S5".

43



4 CONSTRUCTION OF CLIFFORD REPRESENTATION OF SPIN-1 SPINORS

Since we only have two states, particle or anti-particle or up or down spins, one of the 4 always
eliminate the one state and change the other state. Using these operators, we can obtain all Dirac
spinor representations from u; as

(14) W =uy, u?=Su;, v'i=S0u;, v>=Qu.

Dirac spinors for moving frame are given by
(15) u (p) = Rul(0).

Here, rotor R describes a boost and we choose rotor as Dirac boost that is a single boost to any
direction R = ¢~ %i9'/2;

o, 900 JEtm P
(16) R_cos2 Yqu)smz— o (1-1—]/01E+ )

where cosh(%) =4/52 and sinh(%)%i =2 with 0 =/(¢1)2+(92)2+(¢3)2.

2m(E+m)

If we look at matrix representation of Clifford number, we can see that it is the same spinors in
standard representation but in 4x4 matrices.

The spinor u) is given by

1

E-+m 0

u(p) = RaM 2T,
2m E+m
pitipy
"E+m

o

a7 uM(0)

SO O~
o O O

o O OO
(=il e N e)
o OO o
o OO o
o O oo

The conjugate of spinors are i) (p) = u*(?(0)R~! and in matrix representation it is transpose
of spinors. In Standard model, antiparticle spinors are actually charge conjugation of partlcle
spinors so that instead of u®) and u™® , they are vl = —qu( )* and v® = —l’)/zu( ) 1n ma-
trix representation or negative energy solutions (Feynman-Stckelburg interpretation) v/ ( p) =
u®(=p),v?(p) = u®(—p) in terms of Clifford numbers v(!) = Su?> = —ipu? and v(?) =
Su! = —ipu' in rest frame.

We could put Dirac spinors from Eq. (14) in terms of Clifford number as

(18) u'(p) = R(1+1)(1+in2)/4

(19) u*(p) = Rips(1+%)(1+iyn)/4
(20) vi(p) = Rp(1+n)(1+iy2)/4
1) vi(p) = R(=in)(1+10)(1+in2)/4.

3.3. Spin-1 Spinors.

3.3.1. Polarization Vectors. In order to construct the polarization vectors in Clifford algebra,
we could use the isomorphism between Clifford and SO(1,3) such that Cl; 3 ~ SL(2,C) ~
SO™(1,3) since the standard polarization vectors are already derived from this group.

We can begin with describing our vector as v = y,x* instead of v = {¢,x,y,z} = e x* where ¢,
are column vectors for 4 = 0,1,2,3 in SO(1,3) so that we could use Clifford numbers instead
of columns vectors . Then we define the 0 helicity as the z direction vector as £(0,0) = y3
for £(p,A) in Cl; 3. Using raising and lowering operators, J* = (i3 — 151)/v2 and J~ =
(i»3 + 7131)/V/2, we can get spin +1 and —1 polarization vectors and the whole polarization
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CONSTRUCTION OF CLIFFORD REPRESENTATION OF SPIN-1 SPINORS 5

vectors will look like

(22) e(0,4) = —(n+ip)/V2
(23) (0,00 = n
(24) £(0,-) = —(-n+inp)/v2.

As we know, we could make direct connection between polarization vectors and spherical har-
monics as

(25) e(0,+)~Y], €(0,0)~Y, €(0,—)~1 "

We could define the spin operator in terms of spinors
(26) Jo=e(+)e"(+) —e(-)e" (=) = im

and the corresponding function of operator in C/ is interior product. One can see that in Clifford
algebra of Cl 3 the operatoration iy'?.v =V corresponds to J,v =/ in SO(1,3) space.

In Clifford algebra, we use rotors to make a boost in a system. Contrary to Spin-1/2 spinors,
for Spin-1 spinors we need two-sided rotors as in Lorentz transformations. The systems makes
sense if we consider spin-1 particles as mediator of spin-1/2 particles. In this case, as an exam-
ple we will show polarization vectors in momentum space with Dirac spinor that is R is a boost

to any direction R = e~ i9'/2 and polariztion vectors will be

e(pt) = %R(—% _ip)R!

1 m(p® +m)/V2+p'pR  im(p°+m)/V2+ p?pk pPpR

27 = —(ppf
(27) m(YOP +n 0 m + 7 0 m +7’3p0+m)
£(p,0) = R}’3R71

2.3 2 0 3\2

p'p? pep m*+mp’ +(p°)

28 - + s+ +
(28) (Vp Mo s b T i g0 T 0 )

e(p—) = \%R(% iR

m(p® +m)/V2+p'pt  —im(p®+m)/V2+ p*pt pip*
0 +Y2 0 +?’3 0
pY+m p'+m pY+m

1
29 = —(wrf+n ),
m

where pf = (p! +ip?)/V/2 and p* = (p' —ip?)/V2.

When we compare these polarization vectors with standard ones in (65), we can observe one-
to-one correspondance by finding each component by e (p,A) = y*.€(p, ).

Using the notation from [4], we could construct spin-1 state from spin-1/2 states as

(30) Ap— = YL
We could acquire similar expression for Polarization vectors
31) e(p,m—m') =u"(p)a" (p)(p) +v"(p)vV" (p)T(p).

Here, we could define I'(p) = RSQR~! with S and Q from (13). It makes us enable to construct
polarization vectors from Dirac spinors in Clifford algebra in Sec.(III-B) :

32) e(p,+) = @W'(p)V(p)—Vv'(p)@(p))/V2=R(—yi—ip)R"'/V2
33) &(p,0) = (' (p)v'(p)+u?(p)V(p)—Vv'(p)a'(p) — v*(p)@*(p))/2 =RyR ™’
34 e(p,—) = @ (p)V'(p)+Vvi(p)i'(p))/V2=R(n—ip)R""/V2.
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6 CONSTRUCTION OF CLIFFORD REPRESENTATION OF SPIN-1 SPINORS

3.3.2. (1,0)®(0, 1) Lorentz Group Spinors. Since we defined the spinors of (1/2,1/2) Lorentz
group as Y, we could set a isomorphism to spin (1,0) @ (0,1) in terms of bivectors by us-
ing the relation similar convention of electric and magnetic field related with four potential as
E+iB € (1,0)and E —iB € (0,1) as these parts are related as y,vF*¥ = V AA where V = y*d,,
and A = yHA,.

(1/2,1/2) (1,0) (0,1)
N < | (Y1 —1%3) | (Yo1 +i%23)
v < | (M2 —i11) | (M2 +iY31)
2 < | (Y3 —iv2) | (Y3 +iY12)

Because of the similarity with F*V, the spinor u(p) ~ & A p/m with derivative change into
momentum and for the rest frame u(0) ~ % A %. In this situation our spinors on (1,0) & (0,1)
representation will look like

(35) u(0,4) = —p1(1—iv2)/V2
(36) u(0,—) = yi1(1+in2)/V2
(37) u(0,0) = 73

so that we can make connection with (0,1 ) vectors as

(38) _(Y01_i7/23)(1_i’}/12)/2 A (17070707070)
(39) (Y1 —iv3)(1+iv2)/2 < (0,0,1,0,0,0)
(40) (W3 —in2)/vV2 < (0,1,0,0,0,0)
(41) — (Y1 +iy3)(1—-in2)/2 < (0,0,0,1,0,0)
(42) (Y1 +ip3)(1+in2)/2 « (0,0,0,0,0,1)
(43) (13 +i712)/V2 < (0,0,0,0,1,0).

Lets make the same Lorentz transformation of boost for the spin (1,0) @ (0, 1) representation
with similar way of polarization vectors u(p,A) = Ru(0,A)R~!:

(44)
. i . . L4i
u(p,—i—):N{— (Y01 17232)( Wn)(po—i—m—s—f)z—&-(}/03\/;/12)2(p0+m+p3)p’e+ (Yo1 17232)( +1712)2(p1e)2
. i . . | 4+i
_(m +l7’232)( M) (0 +m—pY): - (YOB\ZYU)\@\@(pO—#m—f)pR—k (Y1 +1Y232)( +1712)2(pR)2}

@5) u(p,0)=n{ - O =iV2) 0 sy ey (08212 500y (392

2
n (%1_WBZ)(]+i%2>\@(p°+m—p3)pR+ (701+i7’232)f— W12)\f2(p0+m—p3)pL
+ (703\‘}21'?’12)\/5(p0(p0+m) —(p)) - (Y1 +i7232)(1 +i?’12)\[2(p0+m+p3)p1e}
(46)
u(p,—)=N{ - (Y1 iy232)(1iy12)2(pL)2+(’y03\@i%2)2(p0+mp3)pL (Y01 *i7/232)(1+i7’12) (P +m—p)?
(M +iY232)(1 —i712)2(pL)2+ (7’03\-2?’12) (4 mt pyph— (%01 +i}’232)(1 +in2) (P +m+p)P),

where N = 1/(v/2m(po+ m)). We can see one-to-one component correspondence to standard
spinors in (69), (70), and (71) and Clifford spinors from the expanded form Clifford spinors.

Here, we are comparing our (1,0) @ (0,1) field spinors with spinors which are expressed in
terms of spin =+ states components rather than cartesian states (x,y,z) as well as in chiral basis
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CONSTRUCTION OF CLIFFORD REPRESENTATION OF SPIN-1 SPINORS 7

(Left and Right handed spin 1 SU(2) groups). We require to define a new basis which is written
is terms of handedness and spin states. In the next section, we will see that this expression will
look better when we change our basis into the Grassmann or Witt basis.

3.4. Grassmann algebra and Clifford Spinors. J. Winnberg showed that [6] there is a equiv-
alence between the spin representation of a Clifford algebra and a Grassmann algebra which is
the main algebra of supersymmetry and the relation to the orthogonal group.

We use a little different notation and redefine our Clifford basis as

(47) 0 = (0+n%)/V2 6= (—1—ip)/V2

(48) 6 = (0—1)/V2, 6= (n—in)/V2

then we see that it satisfies the properties of Grassmann algebra with Clifford spinors.
(49) (61)*=(61)>=(6)>=(6,)>=0 and 6,6, =—6,6; fori# j

So we could rewrite our polarization vector with this new basis as well:
(50) e(p,A) =yt = 016" — 06" + 0reR + 617,
where et = (€0 +€3)/v2, e~ = (" — %) /2, eR = (e' +ie?) /v2, el = (e! —ie?) /2.
(51) u(p,A) = 0,6,u' + (6,6, — 6,6, + 6,0, — 6,60,)u” + 6, 62u°

+ 6, 62u4 + (él 0, — 0,6, — 6,6, + Qzéz)us + 6, é2u6.
When we compare the Grassmann basis with Clifford one, you could see that the preivous
expression looks much nicer than the one in Clifford basis in (44), (45), and (46). We also
see how they are related that 6, and 6, are for £ polarizations and 6 and 60, are for right and
left handed basis, although 6 are not exactly R or L systems but combination of them and each

components of u(p,A) in Cl; 3 (38), (40), (39), (41), (43), (42) would be the components in
(51) respectively.

The relation between polarization vector and u spinor can be expressed as
(52) u(p,A) =¢(p,A) A p/m.

It is also possible to expresss p like pp = 0, p™ — 6,p" + 6,p% + 6, p~.

So, we are able to write down spinors as a function o each others like
(53) u'(p,A) = —(pret —pTel)/m

(54) w(p.d) = —(p e" —pTem +plet —plet)/Vam
(55) WB(pA) = (pef+pRe™)/m

(56) w(p,A) = —(pref—pRet)/m

(57) W(pA) = —(pte”—pet+ptef —pfet)/vom
(58) wb(p,A) = (peb—ptet)/m

4. POLARIZATION VECTORS AND GAUGE THEORY

A gauge field provides connection between two local fields. A spin 1 field can be considered
as a gauge field between spin 1/2 fields and this connection gives us two sided left minimal
ideal field as we see in (31). There are similar studies about considiration of two-sided equiv-
alence transformations of spinors [8]. Gauge field can be illustrated with a set of internal
dimension called fiber. In this view, the polarization vectors in Sec (3.3) can be seen as local
transformations of left minimal ideal spinors similar to S operator in (13) which transforms
particle and anti particel spinors to each other as v>! = Su!'"? and effected by moving frame
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8 CONSTRUCTION OF CLIFFORD REPRESENTATION OF SPIN-1 SPINORS

by two-sided v?!(p) = RSR™!Ru'2. One can observe that the time-fibre of left minimal ideal
with a boost will be momentum y* p,, = mRYR~! and space-fiber will be the vector potential
q}/“AL = mRY,R~" because of the relationship between polarization vectors and vector poten-
tials

eipx
(59) Au(p) = / Gu(rdr

We could write the displacement between two point on a manifold with wave function as

(60) dy(x) = y(x+dx) — y(x) = iv" (pu +qAu)dx

where y"dx = dx* and the wave function with these displacement will describe as a phase
transformation

61) l,l/’(x) _ eiquudx“eipx _ eia(x) l//(x)

When we expand our new wave function in differential form as

dx?
(62) I/f’(x—i—dx) — w’(x) + Yuauw'(x)dx—f— ,y‘u,}/va’uavl'l,/(x)7 + .
We can rewrite this expension with momentum space py, = _iau and seperate into different

grades:
(63) ¥(x+dx) = ¥(x)+ir"(pu+qAn) Y (x)dx
dx?

— PP+ P (HGup) + i) + Ay Pl ) S+

where Y"Vp,py = pA p and dyp* terms vanish. We also can observe that the two (1,0) ®
(0, 1) spinor fields emerge in the second order of gauge field expansion in bivector part while
polarization vector appeared in vector part.

APPENDIX A. SPIN-1 VECTOR SPINOR IN SO(1,3) GROUP

The boost operators for polarization vectors in standard representation are elements of SO(1,3)
group

(64) K= K> = K3 =

S O~ O
SO O~
S O OO
S O OO
S~ OO
S O OO
SO O~
S O OO
~ O O O
SO OO
S O OO
SO O~

and our boost operator defined as B = ¢~ Ki¢" and our vectors are e*(0,+) = {0,—1,—i,0},
€"(0,0) ={0,0,0,1}, and e*(0,—) ={0,1,—i,0}. Then the polarization vectors in momentum
space would be

and in terms of polarization states

+m)m/v2+p'p (p"+m)m/vV2+p'p
65) e (p,+)=N .(p , €' (p,—)=N| "
(65) " (p,+) z(p0+m)m/\/§+p2pR (p,—) —z(p0+m)m/\/§+P2PL
pPpR ot
(p° +m)p?
p1p3
et (p,0) =N s where N = 1/(m(p° +m))

(P’ +m)m+ (p*)?
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APPENDIX B. (1,0)® (0,1) LORENTZ GROUP SPINORS OF SPIN-1

Similar to spin 1/2 spinors, we could express (1,0) @ (0, 1) in two seperate spaces, right-handed
and left-handed, instead of pauli matrices we could use SU (2) matrices for spin-1

010 ; 0 -1 0 1 0 O
(66) Ji==11 0 1]}, JZZE 1 0 —-1], J53=10 0 O
010 0 1 0 0 0 —1
In this case, the rest frame spinors in chiral representation are
1 0 0
0 1 0
110 1 10 1 1
67 M0,+ = —= L[0,0 = — , MO,— e
(67) O =57 w00=—7]] w0=71,
0 1 0
0 0 1

The boost operators are : (Kj)gr = iJ1, (K2)r = i2, (K3)r =iJ3; (Ki)L = —iJ1, (K2)L =
—iJy, (K3)L = —iJ3

and the complete boost operator is

(kg 0O
(68) K = ( 0 KL)
with boosted frame will be u(p,A) = e_iKiq’iu(O, A) and spinors in momentum space are
(P +m+p’)?
2(p° +m+ p*)p*
1 2(p*)?

(69) l/t(p,—l—) = 2\/§m(p0+m) (p0_|_m_p33)

1
(70) u(p,0) = —=——— _(
0

(71)

—2(p°+m+p?)pt
(p°+m+p?)?

APPENDIX C. WIGNER-D MATRIX

In general the Wigner D-matrix is described as
(72) D}, (9',6.9) = (jm'|2(¢',6,0)|jm) = "™ d], =™
and the wigner (small) d-matrix wtih general element is

(73) dl, (8) = (jm'|e=™® jm).
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10 CONSTRUCTION OF CLIFFORD REPRESENTATION OF SPIN-1 SPINORS

In this Appendix, we show that there is another way to get these matrix elements by using
Clifford algebra. As we know, Pauli matrices already describe spin 1/2 matrix elements. Yet,
our spinors (or eigen vectors) are a little different from the classical one. There are two sets of
spinors for up and down states each for particle and anti-pariticle states. But ,we will only look
at particle case of i'u!.

When we use the Dirac spinors in (18) and (19), we will have

(74) d%g,l/z ~ate™O 2yl = cos gﬁlul
(75) dllﬁfl/z ~ie?922 = singﬁlu1
(76) di/12/2,1/2 ~ite?92,l = singﬁlu1
(77) dl_/12/27_1/2 ~ 922 = cos gﬁlul.

The only difference in spin 1/2 case is instead of one, we have two cases fo two basis. We could

achieve higher cases also by using the relation
2j . : - .
(78) Aoy = 8, —=Lim [P0 jm") (jm"|e 1972 jm).
allpossibleN N

Then, we could also derive spin 1 wigner d-matrix elements from Pauli algebra as
0 1 0
2§u1 _ +;OS !
Q0) db, = {5167/319/2u1ﬁ1[y319/2u2+ﬁ26y319/2u1b-[1e*y319/2u1}/\/5: wﬂlul

V2

(79) dfl = ' e? 02 g e 110/, 1 — cos

., 0 1—cosO
(81) dll.l = 2P0/ 2y il e 110/2)2 — gin? Eul = - ilu!
82 djy = di,—di_j=a"e®?2w'a —ita®)e" 192" = cosOa'u'.
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Due to the amount of mathematical work and calculations required to obtain the dynamic model
for a bipedal robot, different methods have been proposed. The main two methods orientated
to obtain the dynamic model for a robot are the Newton-Euler and the Euler-Lagrange formula-
tions, nevertheless, both methods work in the Euclidian Space. Once the models are obtained,
a representation is needed to simulate and implement the control laws online, and for this case
the virtual work method or the differential kinematic are used (see [1]).

The problem when trying to implement the model obtained via Euler-Lagrange or Newton-
Euler, is the large extension of these representations, and the high computational cost that its
solving demands. To counter this, the Conformal Geometric Algebra (CGA) improves the
calculation and implementation time due to its nature, since the Euclidian Space is extended,
the representation of the rigid transformations resulting from the connection between links are
simplified (see [2]).

1. MODELING ROBOTS VIA CGA

Making use of the CGA Gy 1, rigid transformations can be expressed in conformal geometry
carrying out reflections between planes:

e Translation: The translation is the product of two reflections between parallel planes
1 _a,
(1) T:l—i—iaew:e 20

here a represent the translational vector, any entity can be translated doing x’' = TxT .
e Rotation: The rotation is the product of two reflections between nonparallel planes:

() R:cos(g)—sin(g)l:e_gl,

here [ denotes the rotation axis.

The screw motion called motor M = TRT represents the rotation related to an arbitrary axis L
3) M=e,

where L is a line, and ¢ represents the rotation angle or the translation in case of L at infinity.
Similarly, any geometric entity can be rotated doing x' = MxM.
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2 MODELING, SIMULATION AND CONTROL FOR A BIPEDAL ROBOT USING CGA (POSTER PROPOSAL)

1.1. Kinematics. The direct kinematics for any serial robot can be represented as a succession
of motors and its valid points, lines, planes, circles and spheres, as developed in [3]

J J
4) X =T Mx; [ [Mj-is1.
i=1 i=1
similarly, L' is defined in terms of L as follows
j—1 -1
i=1 i=1

Differential kinematics equation:

J
(©) i =) [ Lilgi

is explained in [4].

1.2. Dynamics. The dynamic equation for a serial robot with n DOF can be written as follows:
@) Mi+Cqg+G=r,

where ¢ are the angles of the n DOF, M is the inertia matrix, C is the coriolis and centrifugal
forces matrix, G is the vector of gravitational forces, and 7 is the torque input. Now, (7) can be
written in terms of CGA resulting in

(8) SIG+VIm(Vi+Vi+a) =,
1 1 1| | O 0
. . . 0 1 1| |L b )
where a is the acceleration of the gravity force,61 = o with [;
oo ... 11|, I, ... I
mi 0 e 0
. . X . 0 mp ... 0 . X
as the inertia of the link i, m = | . . . | , with m; as the mass of each link, and
0 O my,
xj-Lj 0 0
/ !/ / /
XLy xpe Ly 0 . e e .
V= ) ) . ) with x; as the mass center of the link i in its initial position
x, Ly x,-L, ... x,-L,

and x} as the mass center in function of joints variables; similarly, the joints axis i is denoted as
L; and the joints axis i in function of the joints variables as L]. The development of the dynamic
model can be seen in [5].

Good is to remark that m, I and a are constant matrices and can be known. Only V and V
changes through time and they are computed in a parallel way, using a thread for each matrix’s
component. In this way and having n? threads it is possible to get the V in O(Log(n)).

2. CONTROL ALGORITHMS

There exist several kinds of control algorithms applicable to robotic systems (so call mechan-
ical systems). These algorithms could be of classical control, as shown in [6], mainly formed
by proportional controls via state feedback (P, PD, or PID). Besides the classical control, mod-
ern control algorithms can be applied, a representative technique is the Sliding Mode Control
(SMC), developed in [7]. By means of SMC the system acquires robustness against external
disturbances and parametric variations.
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MODELING, SIMULATION AND CONTROL FOR A BIPEDAL ROBOT USING CGA (POSTER PROPOSAL) 3

Of the proportional controllers, the PD (Proportional-Derivative) is the more popular among
the robotic systems. The form of this controller is as follows

) T=—-K,e—K,q,

where K, € R" is the proportional gain, K, € R™ is the derivative gain, € = g — gy is the
tracking error and ¢ is the velocities of the joints.

On the other hand, to apply a control law using SMC the form of 7 results

S
(10) T=—K,S+Ks+
[1S1]
where S = c€ + ¢, with ¢ € RY, is the sliding surface for the SMC, K € R is the gain for the
sling mode, and ﬁ is the approximation of the sign function when using vectors.

3. SIMULATION RESULTS

The dynamic model was obtained for a 6 DOF bipedal robot as the one from the Fig. 1 ac-
cording to the Section 1.2. Once having the model, a simulation using MATLAB software was
done, applying the control laws from Eq. (9) and Eq. (10) separately in order to follow the
references for taking a step.

The results of the tracking control are shown in Figures 2 and 3. As well, a simulation of the
walking was done and in Fig. 4 the performance is shown.

4. REMARKS

In this work, a method to obtain the dynamic model of serial robots was used to obtain the
model from a 6 DOF bipedal robot. As was shown, different control techniques were applied
to the CGA dynamic model, moreover, simulations were done, exhibiting one of the main
advantages of modeling using CGA, because the same model could be used to analyze, control
law design and simulation of the robot.

Is also important to remark that the application of different control techniques using CGA is
possible because the control techniques use matrices, and even though the elements of the
matrices are CGA entities, the theory of classic and modern control is equally applicable inde-
pendently of the space in which is being worked.
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1. INTRODUCTION

The PID controller (Proportional, Integral and Derivative) is a well know algorithm used in
many applications, as chemical processes, temperature control, robotics and others. From the
point of view of Geometric Algebra, the PID controller is an incomplete technique, because the
final control law is designed only with partial information, taking in account only a scalar value
obtained by the dot product between a gain vector K = [kp,k,-,kd]T, and an error vector given

by the error, the integral of this error and its derivative, this is E, = [e(t), [ e(t)dt, %]Tleaving

aside the properties and advantages offered by the geometric product between them. In this
work is presented a novel approach to associate the geometric product of the gain and error
vectors with the geometric entity called motor in order to improve the performance of the PID
controller. The PID controller was designed as the sum of the product of error elements and the
gain elements. The complet control law is defined as the error by a proportional gain, plus an
integral gain by the integral of the error plus the derivative of the error signal by its respective
derivative gain. There are methods to define the values of the gains, as the Ziegler and Nichols
method [1], and the controller can be defined as

(O)

dt

(1) ( k/

Now, defining K; = and K4 = kpkg, the PID becomes

@) Kyelt +K/ 1)t + K, (;)

this can be expressed as the dot product between two vectors as:

3) K-E, = [K,,Ki,Ky] - [ +/ )}

2. PID DEFINITION IN GEOMETRIC ALGEBRA

We will use the geometric algebra of the Euclidean space G3 ¢ o as the mathematical framework
with all its properties and the vector basis e, es,e3 to define the PID control law. Using the
geometric product of two vector, we obtain the scalar part of the PID controller and a bivector
part with the wedge product K A E,, this is show in the figure 1.

“)

KAE, = ex <Kid2(t’) K, /O te(r)dr) . <Kde(t) —K,,dj; )> ten <K,, /O te(r)dt—lﬁe(t))
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2 A GEOMETRIC APPROACH FOR PID CONTROLLER DESIGN

Then, the PID controller it is defined now as the sum of a scalar part (dot product) and a bivector
part (wedge product), and it is easy to see that the geometric product creates a PID control that
depends on the magnitude of both vectors (vector error (E,) and the gain’s vector (K)) and the
angle between them. Now, using a motor [5] its is posible to define a new gain vector K’ as

I
®

KAE [e(t) f e(t)dt, —]

€1

v

FIGURE 1. PID controller defined in G3 ¢ o

K' = M(0)KyM(8),where K is the initial gain vector. In order to modify our control law it is
only required modify the angle 6 of the motor, and simultaneously modify the magnitude of
the control law. The new gain vector K’ it is given by

(5) K'=M(0)KoM(0) = 1 +I(RxKoRx + Ko - E;)

where Rg = e~ 2l (9°+9)), 0y = cos™! (%), 0 is the actualization parameter and Ix is
defined as

(6) Ix = (K'\NE,+1((K' N\E,) NK'-E,))

this means that the gain vector K’ rotates in the plane formed between itself and the error’s
vector E, once the parameter 0 is actualized, furthermore is scaled in a factor equals to (Kp)
without altering how to obtain the control law, since is still the dot product between them.

Finally the control law U created by the geometric PID’(PIDg) is expressed by
(7 U=E, -MK'M

3. SIMULATION RESULTS

To evaluate the efficiency of the proposed geometric PID a linear second-order plant was sim-
ulated:

(8) mX =bX +kX —U(t)

where m=1kg, k=.1Nm, b=.7Pa-s, the initial vector’s of gains Ky, was calculated with the
method of Ziegler Nichols (K¢=[2 0.07 10]) and the desired reference is .7m. The results
of the control PIDg was compared to the classic PID Figure 2

The control law U for a classic PID is expressed by.

) U=E, K
and the control law Ug generated by the PIDg
(10) U=E, M(0)KoM(0)
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FIGURE 3. Angle evolution

The response of the angle 6 is shown in figure 3, it can be seen that while the state converges
to the desired reference the angle converges to 90°.The motor changes the angle of the vector
K’ respect to the error vector E,, the evolution of the gain vector is shown in figure 4.

Finally in figure 5 is presented the dynamic of the error, its derivative and integral, both the PID
control as PIDg PLC as 3D vectors.

4. CONCLUSION

In this paper it is shown a novel method using geometric algrebra to redefine the classic PID
control. Instead of change the three values of the gains of the controller, we only need to change
the value of an angle in order to modify the performance of the controller.
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ABSTRACT. This work presents a parallelization method for the Clifford Support Vector Ma-
chines, based in two characteristics of the Gaussian Kernel. The pure real-valued result and
its commutativity allows us to separate the multivector data in its defining subspaces. These
subspaces are independent from each other, so we can solve the problem using parallelism.
The motivation is to present an easy approach that can be explained using the more common
known concepts of complex numbers and quaternions, because in general there exists a lack of
familiarity with geometric algebra.

1. INTRODUCTION

There exist empirical and theoretical evidence that Support Vector Machines (SVM) [17, 18, 4]
give good generalization performance on a wide variety of problems [9].

The approach presented in this work can be applied to SVMs that use the kernel trick, originally
proposed in [1]. This trick, in the case of SVMs, is derived from the dual problem, that consists
in the quadratic maximization of Lagrange multipliers

1

(D Lp :Zai_EZ}’inaiajxiijy
1

i,J

where o; represents the Lagrange multiplier for each input vector x;. y; and y; are the labels of
the input vectors x; and x, respectively. We can replace xl.Tx j with the dot product between two
explicit mapped input vectors ¢ (x;),¢(x;). The explicit mapping ¢(.) transforms the original
data into a higher dimensional Reproducing Kernel Hilbert Space (RKHS). The kernel trick

consist in doing this mapping in an implicit way, reducing the computational cost

2) K (xi,xj) =~ ¢ (xi) - 9 (x;))-

In recent years extensions of the real-valued SVM have been proposed, including those based
on complex numbers [20], quaternions [10] and Clifford algebras [3]. These extensions aim
for two things: first, to classify problems beyond the binary one with only one machine and
second, to work with data codified in those complex and hyper-complex spaces.

The first author is supported by CONACYT-Mexico with the Ph.D. scholarship with number 235318, and the
project funding CB 178222.
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In this work we present a parallelization method for these hyper-complex SVM. This new
approach takes advantage of two characteristics of the Gaussian Kernel. The pure real-valued
result and its commutative nature. We can use this fact to separate or to keep apart the subspaces
which define the multivector input data. Also they help us to reduce the dual Lagrangian. We
also did a deduction based in the analytic method used in Sequential Minimal Optimization
(SMO). The deduction proves that the subspaces are independent from each other. Therefore
we can solve the problem using parallelism.

The paper is organized as follows:

Section 2 is a brief introduction to geometric algebra, with a concise explanation of the op-
erations used in this work. Section 3 is an introduction to Clifford SVMs, this presents an
explanation of the CSVM decision function and its dual Lagrangian. Section 4 is an explica-
tion of the derivation of the analytic part of the Sequential Minimal Optimization algorithm.
Section 5 is dedicated to explain the properties of the Gauss kernel which allow us to design the
parallelized algorithm presented in this work.. Section 6 presents some experimental results.
And finally, section 7 is devoted to the conclusions.

2. GEOMETRIC ALGEBRA
Geometric algebra, also called Clifford algebra [8, 2, 12], is a coordinate-free approach to
geometry based on the algebras of Grassmann and Clifford.

Let V be a vector space of dimension n. We are going to define and generate an algebra G,
called a geometric algebra where e, e»,...e, is a set of basis vectors of V" called canonical
vector basis.

The basis vectors square to 1, —1 ; this means that there are positive integers, p and g, such that
n=p-+qand

2 .

e; =l,i=1...p
3) ) ,
e;=—1,i=p+1,..p+gq.

The algebraic product, called the geometric product or Clifford product, of two basis vectors is
anti-commutative:

4) ejer = —eyej,Vj#k.

The product of two basis vectors will simply be denoted by juxtaposition as

(5) ejer = eji.

This introduces the concept of grade. The product of n non-equal basis vectors results in a new
generator of grade n. An algebra with n basis vectors has 2" generators {1, ey,... e,, €12,...
€(n—1)ns - e1..n}- The generator of grade n is called the unit pseudoscalar of the algebra, and is
generally denoted by the letter ”I”. The algebra G, is obtained with the direct sum of the linear
subspaces of grades 0,1,2,...n.

0 1 2 n
© Gu=/ A\Vid AV AVi&... \ V.

A multivector A C G, can be separated in its generators as

(7 A=A1,4+A,1 +Ax+... +A;.
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Geometric algebras isomorphic to complex numbers and quaternions. A complex number has
the form

(8) z=a+ bi,

where i = —1. In this way, is easy to see that the algebra Go,; with the generators {1,e} is
isomorphic with the complex numbers.

In a similar way if we observe the fundamental formula for quaternion multiplication

) P=j? =k =ijk=—1,

and the algebra G, with the generators {1,e2,e2,I} we can get the same behaviour and get
the same result with the product of the vectors as follows:

(10) 6%26%212261621281212:—1.

Geometric Algebra Product and Norm. Now we provide a simplified version of the opera-
tions involved in this work, the Clifford product and the norm of a multivector.

The Clifford product of two multivectors A, B is denoted in an implicit way as

(11 C =AB,

and it can be interpreted as the result of each element of A multiplied by each element of B.
This is similar to the multiplication of two polynomials. Therefore if we multiply a scalar A
and a multivector A the result is

=/
(12) AA =) A,
i=1

where i is the corresponding generator.

The Clifford product is associative and distributive with respect to the addition, but its not
commutative

(13) AB # BA.

To obtain the norm of a multivector we must multiply it with its conjugate, just like with com-
plex numbers

(14) |A] = AAT,
instead of a defining the conjugate of a multivector, we are going to provide another interpre-

tation to keep the simplicity of the definitions. The result of the equation 14 is a summation of
the square of each element, without taking into account the corresponding generator

i=I
(15) Al =Y A2
i=1
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3. CLIFFORD SVM

The Clifford SVM [3] is the most general extension of the real-valued support vector machine.

The dual Lagrangian for the optimization problem is

l
(16) Z Y (G0 () mK (xis ) iun (3700 (06)n] = Y Y (08 )m,

lj 1m,n i=1

where [ is the number of training vectors. Both m and n represent the corresponding generators,
e.g. my is the real part, m, is the part corresponding to the e; generator, etc. K is the kernel
function. The subindex mn represents a Clifford product between those generators and means
that we only use that part of the function result, e.g. if m = e¢; and n = ey, then we only use
the coefficient of e;.

The decision function for the Clifford SVM is written as

l
17) = gsign, [Z ajoy;)( xj,x)+b)],

where v is the state of valency, corresponding to the number of classes that the Clifford SVM
will classify. The Clifford SVM can classify up to v = (2")? classes, where 7 is the number
of basis vectors of the Clifford algebra in which the input data are defined. The o operator is
defined as

(18) ajoy; =Y m(0)m(y;)m
m
where m stands for the corresponding generator.

4. SEQUENTIAL MINIMAL OPTIMIZATION

As stated before, the training of a dual SVM requires the maximization of a very large and
complex quadratic programming optimization problem (QP). There have been some proposal
to solve the QP without the need to use the whole training set at the same time. Chunking
algorithm [16] consists in selecting the worst M training vectors that violate the KKT conditions
and solve the QP with these. We repeat this step adding the next M violators to the previous
result until the whole QP problem is solved. Osuna [11] showed that the QP can be divided in
a series of smaller QP problems, and also proposes to maintain the size of the sub-problem, to
allow the training of arbitrarily sized data sets.

Sequential Minimal Optimization [13], SMO, is a proposal to solve the minimum sub-problem,
consisting of two Lagrange multipliers that have to obey a linear equality constraint. The
advantage of the SMO lies in the fact that solving for two Lagrange multipliers can be done
analytically, therefore an entire inner iteration due to numerical QP optimization is avoided.

SMO has three parts, an analytic method to solve for the two Lagrange multipliers, heuristics
to choosing which Lagrange multipliers to optimize and a method for computing the bias. We
will only see the analytic method because it provides, in combination with the properties of the
Gaussian kernel, the mathematical proof of the validity of this work.

The derivation of the analytic method [14, 19] is as follows:

Due the constraint
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[

(19) Zy,al =0,

we have that, without lost of generality, we can select two Lagrange multipliers o and oy for
optimization, these have to meet the next constraint

(20) Y10y +y200 = y106fld +y20601d = const,
and giving the next definitions

S=Y1)2

Y= 01+50,

we can rewrite the dual Lagrangian, equation 1, in terms of «; and ap, by discarding all the
parts that do not depend of those terms as

1
Lp =oy + ap + const — §(y1y1 (xIxp)od)+
(22)
Y22 (b x2) 03 ) + 2y1y2 (x] x2) 0ty 02)2 Z 0yix] ) (y1X1 0 + y2x200) + const),

if we have K (x1,x;) = xlTxl, K(xp,x7) = xgxz, K(x1,xp) = xlsz and

T
V= Zociy,-xi Xj
i=3

T  old Ild ld, . T
(23) = xw? — oy xj — 08" yox) x;
— (X?W()ld - bold) + bold - old OCOldylxl Xj— Oté’ldyzxz X;
— u;{ld + bold ()ldylxl Xj— aé) dy2x2 Xj,

where u; is the output of x; under the old parameters. With these conditions the equation 22
becomes

X1,X +

K (x2,%2) 07 + 25K (x1,%2) 01 0) + 2y1v1 Q1 + 2y2v200) + const,

reducing the problem we have

1
(25) Lp=:n o3 + (y2(EQ™ — B3 —nag!') oty + const,

where 11 = 2K (x1,x2) — K(x1,x1) — K(x2,x2) and the variable E;’ld ;’ld y; is the estimation
error. The first derivative of equation 25 is

dLp

(26) EES

=N+ (y2(E{" — E§") —nag™,
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if % =0, we have that
2

y2(Ei)ld _Egld>
(27) o — aQold+ 7
? n

by setting the bounds if y; # y»

L =max(0,0p — o)

28

(28) H = min(C,C+o0p —ay)
orifyi =y

-9 L =max(0,00+ o) —C)
29) H =min(C,a+ o)

we have

H if o4>H
(30) o etiered —gllewif I < a4 < H
L if o4v<IL,

and the new value for o can be computed as

ld ld new,clipped
(31) o = o' + s(a5" — oy PP

5. GAUSSIAN KERNEL

The Gaussian kernel is based in a radial basis function, RBF, and has different definitions such
as

=yl
(32) glxy) =exp 20
and
1 eyl
(33) glx,y) = exp 2m?

V2mp

as we can observe, the Gaussian kernel has two very interesting properties. The first one is that
the mapping is not based in the Clifford product, but in the norm of a subtraction of vectors.
Equation 13 tell us that a kernel based in the Clifford product is not commutative. Now if we
observe equation 15 we can see that the result of this kernel is indeed commutative.

In equation 15 is observed that the result of the kernel is purely real, regardless of the nature of
the entry vectors.

Based on this properties and the equation 12, we can rewrite the decision function in equation
17, as a combination of m subspaces, each one for every generator used to label the data
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Algorithm 1 Gaussian Kernel

Input: vector data x, vector data y
Initialize sum = 0.
for k =1 to vectorSize do

for | = 1 to dimensionSize do

sum+ = (xX; — yir)*.

end for
end for
g =rbf(sum)
Return: g

!
(34) v = sign| Y ((0)n(31)m)8(%j:)) + b
j=1

and the dual Lagrangian in equation 16 as

l

l
(35) Lp = % Z Z[()’i)m(ai)mg(xivxj>(yj)m(aj)m] - ;Z(O‘i)m-

i7j:1 m

If we take this new dual Lagrangian and apply the same steps as in the analytic method of SMO
we get

Lp =@+ (@) + const = 5 (o xt) o)

+ (2)m(2)m (¥ X2) 03) + 201 )m (v2)m (X1 X2) Q01 002)
(36) N

+2(§(a,~)m(y,-)mxf)((y1)mxl(al)m

+ (yZ)m-XZ(aZ)m) + COI’le),

which in practical terms is identical to the real-valued one, equation 22. Now, the parameter of
the decision functions is not real, but thanks to the equation 34 we can separate this in multiple
real valued coefficients. If we take this in consideration and apply the same steps to obtain
v;j in equation 23, we have a partial result of the output, equivalent to the m part of the total.
These conditions mean that we have a virtually identical problem to the real-valued one and
that each subspace m can be computed independently, so we can use parallelism to compute
these solutions.

Thanks to the fact that SMO is a derivation of the same dual Lagrangian used in others training
methods, we can also use these results and incorporate them to those methods.

One last thing to consider about the Gaussian kernel is its implementation. Based in equation
15 we can program |x — y| with two nested loops as shown in algorithm 1, so we do not have
the need of a special library or tool to work with geometric algebra.

6. EXPERIMENTAL RESULTS
In this section we presents some experiments performed in order to to prove the idea behind

this work. We did not use classical experiments, like the multidimensional XOR, because they
are binary and a test with this method will be equal to using a real-valued SVM.
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Algorithm 2 Generate labelled spirals
for i =1 to 100 do

s =1/100.

I =ST.

sl = +5scos(t) + 5ssin(t)e;, y=-+1+e;

s2 = —5scos(t) — Sssin(t)e;, y=—1—e;

§3 = —5ssin(t) +Sscos(t)e;, y=-+1—e;

s4 = +5ssin(t) —Sscos(t)e;, y=—1+e;
end for

2D Spirals. The objectives of this experiment are to simulate a complex-valued SVM and use
existing libraries and tools. We choose Scilab [15] using LIBSVM [5] because they are free
and well known. LIBSVM implements an SMO-type algorithm [6]. The decision to present
this problems using complex numbers, was done in order to make the example easily to test.
With the two pseudocodes provided we believe that anyone familiar with the chosen tools can
reproduce the result shown, see how easy it was to implement and then apply the algorithm to
its own data.

First we generate four spirals with labels in G 1, as shown in algorithm 2. The result can be
observed in figure 1.

FIGURE 1. The four labelled spirals generated by the algorithm 2.

Then we proceed to combine two SVM, one for the real part and another for the complex
part, to get the classification of the four classes. The training was done using the equation
32. The result can be seen in figure 2. We can observe that the four spaces were separated
correctly according to the given data, as the red class with label y = —1 — ey, is assigned to the
“unclassified space”.

Circles intersections. This experiment was done in C++ using the kernel-adatron algorithm
[7] as a training method. The objectives are to simulate a pure quaternion-valued SVM and use
a training method different from SMO.

The problem consist in having three overlapping circles, as shown in figure 3, determining our
classes.

Each component of the label y = +e| £ e, £ 1 represents the area of a circle, assigning the posi-
tive label to a point inside the circle and the negative to one outside. This is an interesting case,
because sometimes there exist common characteristics between different classes, so a Clifford
SVM is a very efficient classifier to solve this problem because it classifies these common char-
acteristics as the same in one space and then separates the classes as different in another. The
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FIGURE 2. Classification of the spirals, the little circles represent the support vectors.

-10

-10 0 -10
X axis

FIGURE 3. The three circles used as templates for our classes. The way the

circles intersect with each other gave us six classes, white, green, gray, cyan,
blue, and magenta.

training was done using the function in equation 33. We were able to approximate the form
given by the circles, as show in figure 4.

-10

-10 0 -10
X axis

FIGURE 4. Approximation of the six classes using the SVM.
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7. CONCLUSIONS

We have proved that the approach to Clifford SVMs presented in this paper can be easily im-
plemented using existing libraries, is compatible with different training methods, is easy to use
parallelism and requires almost zero knowledge of geometric algebra.

Future work will be focused in studying the derivation of SMO or another similar method that
allows the use of any kernel, because there are classification problems that yield better results
using different kernels, like the polynomial. Another area of possibly study is the SVMs based
in the primal problem, because they do not use a kernel.
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ABSTRACT. In this work we use conformal geometric algebra to implement the method called
Sphere-Torus-Patch Bounding Volumes. The goal of this method is to bulge a convex shape, cre-
ating a strictly convex shape. This allows us to use continuous differentiable distance functions.
A function with these characteristics is necessary to use a smooth solver to approach collision
related tasks. Furthermore, this method is automated, tunable, efficient and has a good volume
ratio.

1. INTRODUCTION

The method presented here is based on the seminal work of Escande, Miossec, Benallegue and
Kheddar [1]. They presented a method, called Sphere-Torus-Patch Bounding Volumes (STP-
BV), for the automation of the bulging and its extension to the 3-D case. The STP-BV is a
robust geometric operator that constructs a strictly convex shape of a given geometric model.
In other words, it is a method to bulge (i.e., round or curve) a polyhedral convex hull into a
strictly convex hull/shape. This generated shape is useful for collision tasks.

Collision related tasks are important in fields such as robotics and computer graphics. One
efficient way to do them is to have a function that give us the distance between two objects. If
the distance function is continuous differentiable we can use a smooth solver.

So, as discussed earlier, the objective of the STP-BV is to have a strictly convex hull, due to the
theorem first proposed in [2], then rediscovered and differently in [3]:

Theorem 1.1. The distance function for a pair of objects is not continuous differentiable unless
one of the objects is convex and the other is strictly convex.

To explain this we must provide two definitions

Definition 1.1. Convex object: An object is convex if for every pair of points within the object,
every point on the straight line segment that joins the pair of points is also within the object.

The first author is supported by CONACYT-Mexico with the Ph.D. scholarship with number 235318, and the
project funding CB 178222.
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Definition 1.2. Strictly convex object: An object is strictly convex if for every pair of points
within the object, every point on the straight line segment that joins the pair of points is also
within the object, excluding the boundary of the object.

To clarify these definitions we provide an example in the Figure 1. We can observe that the
square is a convex object, but not a strictly convex one, because the line segment between two
points on the same side is on its sides. Meanwhile the circle is a strictly convex object, because
all the points that form any line segments between two of its points are inside it.

FIGURE 1. The red segment between the two blue points in the square indicates
that it is not a strictly convex object.

As explained in [4], non-differentiability of the distance function can be a problem when used
in smooth optimization, the optimization solver might not converge in some configurations, as
observed in Figure 2.

]

FIGURE 2. When two convex objects have a parallel position, we have a dis-

continuity in the difference function. This does not happen when one object is
strictly convex.

Then, Why not use non-smooth optimization solvers? This is an option. However, with respect
to smooth optimization routines, non-smooth ones are less easily available, less complete, and
slower. Furthermore, it is worth adding distance constraints in existing schemes that already
rely on smooth optimization routines (robotic models are generally smooth), or directly on
function derivatives.

The STP-BV uses geometric entities such as spheres and circles, and takes advantage of con-
structs and operations between them. This makes it a perfect candidate for an implementation
using conformal geometric algebra (CGA).

70



SPHERE-TORUS-PATCH BOUNDING VOLUMES USING CONFORMAL GEOMETRIC ALGEBRA 3

The paper is organized as follows: Section 2 presents previous approaches. Section 3 explains
the basics of conformal geometric algebra(CGA) used in this work. Section 4 explains all the
elements related to the STP-BV, including the implementation details using CGA. In section 5
we show some results. Finally section 6 is devoted to the conclusions.

2. PREVIOUS APPROACHES

Some of the previous works about in the subject use a geometric entity per link. This presents
different problems depending on the shape of the selected entity. If the shape is strictly convex,
they can work as bounding volumes (covering at best the robot’s links). This shapes would
guarantee the differentiability of the distance function.

A single sphere or ellipsoid per link exhibits a weak volume ratio fitting, particularly in the case
of thin and long robot links.

Superellipsoids and hyperquadrics have a better volume ratio. But computing distance from
these shapes to others is too time-consuming [5] for tasks in control.

Furthermore, it is impossible to make the volume ratio fitting for a general convex shape arbi-
trarily close to 1.

The use of parts of these shapes to better fit each link increases the number of constraints added
to the optimization problem. By combining spheres, k-IOS [6] can fit the object tighter, yet the
ratio might be no better than 0.5 in pathological cases.

Few other papers addressed the non-differentiability of the distance between convex bodies.
Rusaw in [7] used non-smooth analysis in the context of sensory-based planning.

Patel et al. [8] used cylinders as BVs to cover a robot and recognized problems in the control
when pairs of cylinders become parallel. They proposed solving this issue by thresholding the
output speed of the robot.

Many authors acknowledged this problem when using capsules [9] or convex hulls in optimiza-
tion problems [10].

3. CONFORMAL GEOMETRIC ALGEBRA

Conformal geometric albebra is a representation of the vector space as presented in [11]. A
more detailed explanation can be find in [12] The objective is to expand the vector space R”
with the Minkowski space R1!.

Let R be a real vector space, which has associated a Geometric Algebra G,, 1,1, then its
vector basis satisfy:

2
e =1,
(1) 2 =—1

e,-zz I, fori=1,...,n.
In addition, the following properties are satisfied:

er-e_ =0,
2) ei-er =0,
ei-e_=0,fori=1,...,n.
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So that, we define two null basis:

o —€_ te4,

3) e —e,
en =
0 ) ’

with the properties: e% =e2 =0,and o -eg = —1.

The set of all null vectors in R"*1! is called the null cone, and its intersection with an hyper-
plane with normal e, and containing point e, is a surface called horosphere, defined as:

4) N = {x. e R"™ 12 =0,x. e = —1} .

Now, all points that lie on the horosphere are called conformal points, represented by:

2
X5€o00

2

where, x, € R”. In addition, three unit pseudoscalars are defined: I, for ¢,, E that represents
the Minkowski plane, and I for %, 1 i:

(5) Xe =Xe+

+eo ,

I, =erey---ep,
(6) E = e Neo,
I=I.NE.

Finally, Table 1 summarizes the representation of geometric entities in %, 1, where IPNS stands
for inner-product null space, and OPNS stands for outer-product null space.

TABLE 1. Representation of three-dimensional geometric entities in CGA.

Entity IPNS OPNS
Circle |Z=SAT=SAS| Z*=N\_ %
Line L=n.Jd,+meee | L" =€, /\iz:l Xei

2
Sphere S=c.— %ew z" = ?zlxci
Plane T =n,+dew T = e N\ /\13:1 Xei
Point Pair | PP = /\,-2:1 Si PP* = izzlxci
4. STP-BV

Consider a point cloud &2, and for r < 0, the set &, of (closed) balls B(P,r) centred at each
P € & and with radius r(Z) = ). Let Bg () be the set of all balls with radius R that
encloses every ball of &, (R — r must be at least the radius of the smallest sphere containing

Py).

Definition 4.1. STP-BV: The STP-BV of the set & with the raddi Randr is the intersection of
all the balls of radius R containing the balls of radius r centred at each point of &

(7) STPr,?= ()| B
BE%R,r(g)
Henceforth, we ignore the special case where there is a single point in & and r = 0, therefore

the STP-BV has a non-empty interior.
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4.1. Geometric Constructions. In order to create the bounding volume, we must know how
to bulge the faces and vertices.

e Faces
Every face composed of 3 points delimiting a triangle, if a face has more that 3 points
is subdivided, is curved to a spherical cap.
In order to obtain the sphere needed we took the three conformal points of the face
and convert them into spheres as

RZ
() §=Xc— e,
and intersect them to get a point pair
(€)) PP = xc1 NXea NXe3,

The points in PP correspond to the two possible centres of the sphere, see Figure 3.
To get the correct point we get the normalized line and sphere that form PP and do

FIGURE 3. The red point pair is the intersection of the 3 spheres.

(10) XE = CE — NETs,

where cg is the euclidean center of the sphere, r; is the radius and ng is the vectorial
direction of the line. Another option, if we are using GAALOP, is the provided macro
ExtractSecondPoint to obtain the point.

e Edge

For the edge, the authors use a torus and found a clever and efficient way to represent
it, that can be translated to CGA entities.

The torus is represented by the construct of a circle, that can be decomposed into its
center, norm and radius and a sphere which center always lays on the circle.
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Algorithm 1 STP-BV construction

Input: point cloud &, value of R
Result: the STP-BV polyhedron 7% &
v,v1,v2 and v3 are vertices
¢,c1 and ¢; are sphere centers
next : is a list of sets (vi,vy,v3, (v,a)) sorted by increasing value of a.
out put : a structure describing 7% &
Build Volume(Z2, R) init(next,out put)
while no next.isEmpty() do
(v1,v2,v3,(v,a)) < next.pop()
out put.addFace(v{,v,v))
if next.contains(vy,v) then
next.delete(vy,v)
else
next.insert(vy, v, vp,nextPoint(vy, v, v));
end if
if next.contains(v,v,) then
next.delete(v,,2)
else
next.insert(v, v, vi,nextPoint(v,v,,v1))
end if
end while
Return: out put

4.2. Constructing the STP-BV. We have done all the modifications using CGA in individual
functions, returning the same result or an equal one. This means that the general steps of
algorithm remain the same.

There exist by definition a one to one ratio between the spheres and tori of the ST Pg ,(%?) and
the faces and edges of 7% (Z).

The Algorithm 1 describes the construction of the STP-BV. It is for the most part a gift wrapping
algorithm, with spheres instead of planes. We find an initial sphere which associates spheres
contain &2. We then rotate the sphere around the edges of the face until it reaches new points
of . This defines new faces and new edges around which to rotate.

Algorithm 2 describes the intermediate functions. The init function finds an initial face. Since
we can perform only one rotation at a time, we maintain a list of rotations to be completed.
Maintaining this list next is the main task of Algorithm 1.

Each element of next is a set (vi,v2,v3, (v4,a)) encoding a positive rotation with angle a of the
sphere associated with the face vivv3. The rotation around the edge vi,v, must warrant that
the face reaches the point v4. a is the angle between IC; and IC;.

The list next is ordered according to the angles a. It supports the classical operations pop and
push. The operation contains(vy,v;) return true if any element of next begins with (vy,v;) or
(v2,v1). delete(vy,v,) eliminates such an element. output is a structure describing a polyhe-
dron (set of vertices, edges and faces). The function addFace(vy,v,,v3) uploads it by adding
the face vivyv3 (described counter-clockwise) and the corresponding edges and faces, if not
already present. sphere(vi,va,v3,R) returns the center of the sphere as constructed early.
angle(cy,cp,v1,v7) returns the angle between ic; and icp, where i is the middle point between
vy and v,. nextPoint(vy,v,,v3) looks for the first point v encountered while rotating the sphere
associated with v{vov3 around the edge V;v;, and returns it along with the angle a needed to
reach it. v denotes the only point for which the sphere associated with vivv, contains &, but
when there are co-spherical points, any point will do. We discuss the special case v = v3 later.
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Algorithm 2 intermediate functions

init(next,out put)
for each (vi,vo,v3) € P> with v; # vjdo
¢ < sphere(vy,v2,v3,R)
if # C*B(c,R) then
out put.addFace(vy,v;,v3)
next.insert(vy, vo, v3,nextPoint(vy, vy, v3))
next.insert(vy, v3, vy, nextPoint(vo, v3, vy))
next.insert(v3, v, vp,nextPoint(vs, vy, vy))
Return: SUCCESS
end if
Return: FAIL
end for

nextPoint(v{,v,,v3)
for eachve & —{v;,n} do
¢y < sphere(vy,v, v, R)
if Z C B(c2,R) then
if v = v3 then
Return: (v, 7)
else
c1 < sphere(vy,vz,v3,R)
Return: (v,angle(cy,c2,v1,v2))
end if
end if
end for

At each iteration, Algorithm 1 processes a new face vivv; obtained by turning around v{v,. For
the two edges v{v and vv, we can observe two cases:

e 1) We encountered the edge before when processing a face f. There is no need to rotate
around this edge anymore because rotating the sphere associated with f around the edge
would give v{vv, and vice versa. We remove the rotation from next.

e 2) We did not encounter the edge before. We need to perform the rotation around it later
so we add it to next.

The output of Algorithm 1 is 7% from which, with the computations described in the pre-
vious section, we can build the boundary of ST Pg (< (spheres and tori with their limits) and
thus any ST P, <.

The reason for choosing the smallest rotations first is to ensure the robustness of the algorithm
with numerical errors in the case of polygonal faces whose vertices are on the same sphere (co-
spherical). In this case, all vertices should be reached at the same time when turning around an
edge of this face, and thus, we select the vertex with the lowest index. Yet, this is sometimes
not the case because of numerical rounding errors.

Thus, different vertices can be chosen when we reach the face by turning around different
edges, resulting most of the times in overlapping triangles. This leads to an algorithm failure.
To prevent this, we force the algorithm to finish covering a polygonal face that it already began,
by choosing to turn around the edge with the lowest rotation. This avoids us setting a threshold
that defines when points are co-spherical and searching for co-spherical points each time there
is a rotation around an edge.
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(A) A face, the two arcs repre- (B) A edge, the arc represents (C) A vertex, the cyan sphere is
sent its sphere. its tori. its bulge.

FIGURE 4. Closest part of the cube to the ground.

In special cases, it can happen that the rotation of the face viv,v3 around v{v; stops at v = v3.
For example, this occurs when &2 has only three points, but it can happen with more. In this
case, after turning around v;v,, the algorithm will remove the rotations around v{v3 and v,v3
from next, while one of them might still be needed. To avoid this, nextPoint forces the angle
to m when detecting the case, to ensure that the corresponding rotation will be the last one
processed.

Finally, init fails in two cases:

e 1) If R is smaller than the radius of & (ST Pg(<?) does not exist)

e 2) In the case of thin long clouds, where no ball of B () is tangent to three points
of &. In the latter case, STPgo(Z?) is the torus where the two furthest points of &
define its axis.

5. RESULTS

The cube in CLUCalc. This experiment is the example of the cube done in CLUCalc [13, 14].
In this exercise we get the closest part of the cube to the floor, represented by a yellow plane. In
this example we do a simulation of the construction of the STP-BV to know the exact behaviour
of the conformal entities. The aim of this experiment was to know how to replicate the results
of the original algorithm using CGA. We did not program a proper distance function for this
experiment. Instead we the planes of the faces as geometric constrains to delimit the valid
distance of the spheres to the floor.

The Figure 4 contain the results of this experiments, showing a face, edge, and vertex as the
closest part of the cube to the plane.

The sch library in ROS. This experiment consist in the modification of the libraries provided
by the authors [15] and the integration with ROS. The aim is to use it for robotic simulations
using r-viz and gazebo, and eventually test with real robots. The efficient code for the CGA
was obtained using GAALOP [16].

The first part of this integration was to visualize the results of the algorithm using rviz. In
the Figure 5 we observe two spheres and two boxes, with the line segments representing the
witness points. We must clarify that since the box is not a conformal entity, we did not alter the
function to create one.

The second part of the integration consist in taking information of the positions of the links
from gazebo (these later can be replaced with information from a robot). In Figure 6 we can
observe the integration using the files for the robot Reem-C [17].
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FIGURE 5. Visualization of the algorithm using rviz.

FIGURE 6. In the left we observe the robot simulation in gazebo. In the right
the visualization of the algorithm in rviz, where the read lines represent contact
between the parts.

6. CONCLUSIONS

In this work we presented an implementation of the STP-BV using CGA.

Future work will be focused in finding ways to improve the method using CGA and its integra-
tion with other algorithms using CGA.
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ABSTRACT. In this work, we present a Field Programmable Gate Array (FPGA) implemen-
tation of a Conformal Geometric Algebra Voting Scheme for detection of circles and lines in
images with real objects. All geometric operations, such as meet, join, and transformation of
entities, are computed in hardware using an FPGA.

The voting scheme consists in two stages; in this hardware version, we have implemented
the first stage of the algorithm that operates over a neighborhood in the image. The top de-
sign consists of five main hardware sub-modules that interact between them using intermediate
memories.

The design has been validated comparing the results of the FPGA with the results previously
obtained in a software reference application using real image data. We were able to observe
that by using separated memories for intermediate results, the main units of computation can
operate in a kind of pipeline mode over separated groups of data. This characteristic allows a
better performance in the algorithm execution.

1. INTRODUCTION

When humans look at a scene, our visual system is capable of detecting prominent features and
finding meaningful relationships between them. The process of structuring visual information
into coherent units is called perceptual organization, and its principles for the human visual
system are stated in Gestalt psychology theory [1, 2].

From the computer science perspective, traditional methods for detection of geometric entities
resort to voting schemes such as the Hough transform [3] and Tensor Voting [4]. Using Confor-
mal Geometric Algebra (CGA), a generalization of these methods was proposed by Altamirano
and Bayro [5]; such a generalization is made via an inner product of a set of tokens, #;, with
respect to a flag, F':

1 ¥ (F-t,')z
— Y Wlay, - ,am,tj)———, 1
and W is a function that maps a set of parameters {ay,-- - ,an,t;} to a scalar value, and codifies

perceptual properties according to Gestalt principles. Thus, the role of a voting scheme is to
find the geometric structure F' that minimizes Equation 1; thus, F' is supported by a set of tokens
{t1,t,--- ,tx}, and at the same time satisfies perceptual constrains codified in W.

For computing F, Altamirano and Bayro [5] propose a two stage methodology: a local voting
process, which extracts salient geometric entities supported in a local neighborhood, and a
global voting process, which clusters the output obtained by the local voting process.

Since the local voting step is performed in each edge-pixel of the image, this method is highly
computationally demanding for this reason we propose a hardware implementation using FPGA.

The top design consists of five main hardware sub-modules. The first sub-module called voting
module computes one vote for each neighbor in the current neighborhood. The Intersection
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module computes all possible intersections between pairs of lines obtained by the voting mod-
ule. Then, those intersections are processed by the DBSCAN module in order to be classified
in clusters using integer labels. The Cluster mean module takes those elements classified in
clusters and computes the mean point of the cluster as well as the overall density. Finally,
the Cluster select module returns those clusters with maximum density. All these modules
interchange data using intermediate on-chip memories.

This implementation is targeted to a ZC206 evaluation board featured with the new Xilinx
FPGA Zynq 7000 based on a SoC (system on chip) architecture running at 200 MHz. The
design has been validated by comparing the results of the FPGA with the results previously
obtained in a software reference application using real images data.

The organization of the paper is as follows: Section 2 presents an introduction to CGA, the
Voting Method is described in Section 3.1, the FPGA implementation is presented in Section
4, and experimental results are shown in Sections 5 and 6, and finally, Section 7 is devoted to
conclusions and future work.

2. CONFORMAL GEOMETRIC ALGEBRA

Conformal Geometric Algebra (CGA) allows the representation of geometric entities and their
properties by embedding a euclidean space R” in a higher dimensional vector space R"*1:1,
Here, we summarize the construction of CGA; for a detailed study see [6].

Let R"*1:1 be a real vector space, which is associated with geometric algebra “.+1,1, then its
vector bases satisfy: e%r =1,¢%2 =—1, and e?‘ =1, fori=1,...,n. In addition, the following
properties are satisfied: e, -e— =0,¢;-e; =0,and e;-e_ =0,fori=1,...,n.

Then, we define two null bases: e. = e_ + ey, and ¢y = 0.5(e— — e,.), with the properties:

e%:efo:O,andem-eO:—l.

The set of all null vectors in R"T1:! is called the null cone, and its intersection with an hyper-
plane with normal e, and containing point e, is a surface called horosphere, defined as:

N? = {x, e R"™ 1 x2 =0,x, - €co = —1} . (2)

Now, all points that lie on the horosphere are called conformal points, represented by:
Xe = Xe+0.5x2€0 + € | (3)

where, x, € R”". In addition, three unit pseudoscalars are defined: I, for ¢,, E, which represents
the Minkowski plane, and / for ;1 i:

I, =cejey...epE=exxNeg; I =1, NE . 4)

Finally, Table 1 summarizes the representation of geometric entities in CGA %3 1, where IPNS
stands for inner-product null space, and OPNS stands for outer-product null space.

TABLE 1. Representation of geometric entities in CGA 43 1.

Entity IPNS OPNS

2
Circle |Z=c.— %ew ZF = ?:1xc,~
Line L=n,+de. |L* =e.N /\lzzl-xci

Point Pair | PP = A\?7_,Z; | PP* = N7 X

3. CONFORMAL GEOMETRIC ALGEBRA VOTING SCHEME

The essential components of this approach are summarized in two methodologies: to represent
information using CGA, and to communicate information via a voting process.
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3.1. Representation of Information Using CGA. For applications with images, we consider
them as a vector space R?. Then, a pixel p; is represented as a conformal point of CGA, and
perceptual structures such as circles and lines in the image are represented as elements of CGA
¢ 1, according to Table 1. Then, a pixel p; lying on a circle or line, S, satisfies: S- p; = 0.
Consequently, for a set of pixels {p1,p2,---, pn}, the circle or line that satisfies S - p; = 0, for
i=1,2,...,N define a minimum for:

1 & (S-pi)?
Nizzlw<alv"'vamati)W7 (5)

where W is a function used to codify perceptual properties according to the Gestalt principles
of proximity, co-curvilinearity, and constancy of curvature, and is defined as [4]:

2 +cp?
o2 ’

W(S,p,C,G) = €xXp (_ (6)

where ¢ controls the degree of decay with curvature, o determines the neighborhood size of

the voting, s represents the arc length, and p the curvature. The values of ¢ and ¢ are taken as

input parameters, while s and p are computed as follows:

0d 2sin @

= — - 7

where d represents the Euclidean distance between pg and p;, and 6 represents the angle be-
tween the tangent of the circle at pg and the line defined by pg and p;, given by the equation:

0 = arctan <&> — arctan (—ﬁ) . (8)
u; Cy

3.2. Communication of information. This stage has two parts: a local voting process, which
extract salient geometric entities supported in a local neighborhood, and a global voting pro-
cess, which clusters the output obtained by the local voting process.

3.2.1. Local Voting. In this stage, we took an edge image, selected an edge pixel, denoted by
Po, and defined a neighborhood, denoted by Fy. Without loss of generality, we set pg as origin
of the coordinate system; then, a pixel p; has image coordinates (u;,v;).

Next, each pixel in the neighborhood pg casts a vote in the form of a line:

uj Vi |Piel

L, = — e — ey + €, 9)
’Pie‘ |pie| 2

After that, we map each point p; in F to a line with density, denoted by /;, and obtain a set of
lines denoted by Lg. The intersection of each pair of lines in Ly, is the pair of points:

COij/\eoo:(li/\lj)*, (10)

and from this result we extract cg;;. If the result is zero, then the lines meet at a point at infinity,
hence py, p; and p; are collinear. In this case, the vote is the line passing through po, p; and p;:

noij = (Po A piNew)”. (11)

In the voting space, each co;; or ng;; is a point, and its saliency value is given by:
W()l'j:W(Si,pi,C,G)+W(Sj,pj,C,(7). (12)

Once we have computed all possible intersection of lines in set Ly, we cluster resulting points
using DBSCAN algorithm [7]. The next step is to compute the perceptual saliency of each
cluster:

W=y W. (13)
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Finally, we select clusters that surpass a threshold value and compute the weighted mean of
points in the selected cluster, for circles:

1
Coij = WZZ(WOijCOij)- (14)
i

and the radius is given by the magnitude of ¢o;;. On the other hand, if the winner of the voting
process is a line, we compute:

1
0ij = 35 Z Z (Woijnoi) - (15)
i
and the Hesse distance or foot is zero.

3.2.2. Global Voting. Let S and L, be the output of the local voting process, i.e. a set of circles
and lines, respectively; then, we apply DBSCAN algorithm to separate into clusters: circles
with the same center and radius, and lines with the same normal and Hesse distance. Thus, Sis
partitioned into subsets Si b ,ﬁq, where each 5‘k is a cluster of circles obtained by DBSCAN. In
the same way, Lis partitioned into subsets ﬁl . .f,q, where each f,k 18 a cluster of lines, obtained
by DBSCAN. Finally, we compute the weighted mean of each cluster S, ... ,Sq,il . .ﬁq and
select those entities that surpass a threshold value.

4. HARDWARE IMPLEMENTATION

Field Programmable Gate arrays (FPGAs) are electronic devices based on a matrix array of
logic blocks whose function or behavior and their interconnections can be programmed to em-
ulate almost every digital circuit or system. In addition to these logic blocks, FPGAs also
contain other dedicated blocks, such as: on-chip memories and optimized blocks for arithmetic
operations, mainly used in digital signal processing (DSP) applications, as well as blocks ded-
icated to the good management of the clock signals through all the device. Finally, the I/O
blocks are located at the device boundaries and are responsible for the real world interaction.
They can manage different voltage standards as well as high impedance states [8]. A general
FPGA architecture is depicted in Figure 1.

Input/output Blocks  Programable logic blocks

63 B3 9 3 B0\ 9
— —

wl H HHE T H L
woH [ H H HEoHe ] e
] o
[ H H e H
110 110
o] L H o A H L e
—— ——
woH [ H H He e H e
S CH H A H A ™
— ‘R’

Programmable

interconections DSP Plocks RAM blocks

FIGURE 1. Generic architecture of an FPGA.

The above features allow FPGAs to host multiple instances (copies) of a module. This way,
we can process multiple sets of data in parallel, obtaining run times which are generally lower
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those for the same process executed in a PC. This is the main motivation for implementing the
geometric voting scheme in an FPGA.

In the following subsections we present details of the implementation.

4.1. Methodology. Traditionally, FPGAs are “programmed” using hardware description lan-
guages (HDLs). The most important HDLs used in the industry and education are VHDL and
Verilog. In order to program FPGAs, it is necessary to have knowledge about digital circuit
design in order to use any of these languages, this is a problem for software programmers inter-
ested in implementing their algorithms in FPGAs. For that reason, many tools that convert high
level code in HDL were developed, this process is known as high level synthesis (HLS). Prac-
tically all modern computer assisted design (CAD) tools for FPGAs have this capability. HLS
has considerably decreased the development time for implementing complex digital systems in
FPGAs. For these reasons, we have chosen HLS to implement our algorithm.

4.2. Developing platform. Our design is planned to be implemented in the ZC706 developing
board from Xilinx Inc. This board is featured with the new FPGA family based on a system
on chip (SoC) architecture. In addition to the programmable logic blocks included by the
typical FPGAs, this SoC family has two ARM cores in the same silicon die, allowing a better
integration in projects mixing software and hardware design.

Xilinx Inc provides the Vivado HLS tool for high level synthesis in its products. This tool ad-
mits C, C++, and SystemC as high level languages. It is important to consider that only a subset
of the languages is supported for synthesis. There are features that cannot be implemented in
hardware, for instance, memory dynamic allocation is not supported. The size of all arrays
must be known in compilation time, as the arrays are implemented as embedded memories
with fixed size. Another point to consider in HLS code is the size of the data type used. It is
important to use variables with the minimum necessary length in bits to store values in order
to avoid wasting valuable logical recourses in the FPGA. HLS tools provide data types with
arbitrary length in bits to guarantee optimal resource utilization.

4.3. Architecture. In order to minimize memory utilization in our design, all real values are
stored using simple precision floating point format (32 bits), while integers are stored using
arbitrary lengths, noted above. The algorithm description is designed to process one neighbor-
hood at a time, allowing multiple neighborhoods to be processed in parallel for future imple-
mentations using multiple instances of the module presented here. The architecture results in 5
main sub-modules and 5 memory arrays, as shown in Figure 2.

Neighborhood Voting Module Votes Memo| / Intersection
Tory\i i ‘ i Module

2x32 ’ 4x32 4x32
X0
Depth=n (= >  Depth=n =
Width =2 x 32 i Width = 4 x 32
\ Flow Control bus \ HM?
s \
Output Cluster Select j / Cluster Cluster Mean d Intersection i DBSCAN
Mempory @ Module Memory <i Module Memory Module
4x32 4x32 4x32 T 1| 3x32 3x32+18 S 5
J al® °o | Qo4
Depth =k ® Depth =k @ff Depth = n(n-1)/2| ' 7 @@ —
Width = 4x32 | 4 b »| Width=4x32 | ok°n Width = 3x 32 +|_ ®°d &
S RO | o 18 b

FIGURE 2. Illustrative block diagram of the local voting unit architecture in FPGA.

At the input, there is a memory neighborhood memory where the coordinates of the elements
in the neighborhood are stored in pairs (x,y). Floating point values are used to store these
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coordinates, as shown in Figure 3. The coordinate pair corresponding to py, is stored in the
first address of the neighborhood memory (address 0), and the rest of points are stored with
coordinates relative to po due to the origin shifting to the center of the neighborhood. This
memory has a depth of n, where n is the maximum amount of neighbors per neighborhood
supported by the module, and the width is 2 x 32 bits.

Neighbor pi.x (32 bits) pi.y (32 bits)

Line (conformal vector) Li.x (32 bits) Liy (32 bits) | Dist_h (32 bits)

DBSCAN Aux (2 bits)

clusterID A

Intersection point.x (32 bits) | point.y (32 bits) w (32 bits) (16 bits)

Cluster mean.x (32 bits) | mean.y (32 bits) | radius (32 bits) w (32 bits)

FIGURE 3. Storage format for data types used in the FPGA implementation.

The fist sub-module then takes each element in neighborhood memory and generates the four
coefficients of the conformal vector corresponding to the vote line according to Equation (9).
The results are stored in votes memory, whose depth is also equal to n but with a width of
3 x 32 bits since eg coefficient is always equal to zero; therefore, it is not necessary to store that
value. The second sub-module takes the lines in pairs and computes every possible intersection
between them using Equation (10). Furthermore, in this step the perceptual prominence is also
computed using Equation (12). The equations of the coefficients for the resulting bivector are
computed as follows: let /; and /, conformal vectors describing lines in %3 1:

[y =nxie; +nyies +dhjes + Oeg,

1
lr =nxye1 +nyze; + dhyes + Oeg (16)
Then applying wedge product between /; and /, results in the bivector:
LNl = ajern + aze1e + aze1o + asere + asez + dsees, (17)

where:
ay = (nx; X nyy) — (ny; X nxp) , ay = (nx; x dhy) — (dhy X nxy),

a3 = (nx; x0) = (0xnxp) =0 , as = (ny; xdhy) — (dh; X ny,), (18)
as = (ny; x0) = (0xnyy) =0 , ag = (dh; x0) — (0 x dhy) =0,

The result of applying dualization to Equation (17) is:

(L NL)" = bie1s + breio + b3ero + baereo + bserg + beep), (19)

where:

by=-as=0, by=a4 , b3=—a5=0 ,

(20)
by=—ar , bs=a3=0, bg=a;y.
To extract cq;; from Equation (19) according to Equation (10), we need only the following
coefficients: by, b4 and bg. Once the center of the circle has been computed, the result is stored
in intersection memory, using the format for intersections shown in Figure 3. This element
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stores the center of the circle, the perceptual prominence w, as well as the cluster it belongs to
and 2 extra boolean auxiliary fields to DBSCAN algorithm. Thus, the depth of Memory 3 is

equal to % in order to be able to deal with the quantity of intersections, and the width is
equal to (3 x 32+ 1642 x 1) bits according to Figure 3.

The next sub-module executes the DBSCAN algorithm over the data in intersection memory;
this block modifies the clusterID field of each element in order to classify the intersections
in clusters. When a point is considered noise, the block labels that intersection as -1. The
sub-module called means computes the overall density of each cluster using Equation (13) as
well as the weighted mean center of each cluster using Equation (14), and the results are stored
in cluster memory using the format shown in Figure 3. An element of type cluster stores the
weighted mean center of a circle, and its density as well as the radius that is calculated using
the euclidean distance from the center to pg. Thus, the depth of cluster memory is k, where k
is the maximum number of clusters supported by the design and is assigned by the developer.
The width is equal to (4 x 32) bits according to the format shown in Figure 3.

Finally, the last sub-module finds the cluster with maximum density and selects all the clusters
that surpass this value with a tolerance of 1 unit. The clusters fulfilling this criteria are stored in
the output memory, which has the same geometry as cluster memory. The clusters stored in the
output memory are then the winners of the local voting process in the current neighborhood.

5. EXPERIMENTAL ANALYSIS

In this section, we present an experimental comparison between the output of the FPGA im-
plementation of the algorithm, and a C-language version implemented in a personal computer
(PC).

For this first work, the FPGA implementation was executed in the Vivado simulator provided by
Xilinx Inc, using the ZC706 board as the target device running at 100Mhz. On the other hand,
the C-code implementation, was executed on a laptop computer with a processor Intel Core
17-3630QM (3rd generation), 16GB of RAM DDR @ 1600Mhz, and a Linux Mint 17 operating
system with kernel version 3.13.0-24-generic.

FIGURE 4. Experimental results. Input images in the first row, the output ob-
tained by the FPGA in the second row, and the output obtained by the PC in the
third row

Figure 4 shows: the input images in the first row, the output obtained by the FPGA in the sec-
ond row, and the output obtained by the PC algorithm in the third row. Each column shows the
result for different input images. In the case of RGB input images, they were pre-processed
using a mean filter and a Canny edge detector [9]. In the case of output images, green pixels
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represent edge-pixels of the input image, and grayscale pixels represent the output of the al-
gorithm. Pixels in white represent the circles with maximum saliency, obtained by the local
voting algorithm.

Although the FPGA implementation uses data types half as precise as the PC implementa-
tion (32bits float vs 64 bits double), Figure 4 shows that both implementations obtain similar
outputs. In particular, the first experiment took approximately half the time in the FPGA im-
plementation.

6. FPGA RESOURCE OCCUPATION

Table 2 shows the resource occupation in the FPGA for the implementation of the voting
scheme algorithm.

TABLE 2. Resource occupation in FPGA

Resource BRAM_18K | DSP48E | FF LUT
Expression - - 0 238
Instance 226 214 53029 | 119293
Memory 659 - 0 0
Multiplexer - - - 561
Register - - 603 -
Total 885 214 53632 | 120092
Available 1090 900 | 437200 | 218600
Utilization (%) 81 23 12 54

As we can see, the most used resource is memory, this is expected due to all the memory
arrays shown in Figure 2, for future implementations that will include lines detection and global
voting, internal resources will not be sufficient, therefore we will need to use external resources
as 1GB DDR memory mounted in the development board.

7. CONCLUSIONS AND FUTURE WORK

We have presented a work in progress regarding an FPGA implementation of a voting method
for feature extraction in images. All geometric operators such as meet, join, and conformal
transformations are implemented in hardware in an application-driven device. Of particular
interest is the output of the local voting, which is a set of local descriptors of shape; these fea-
tures are useful in robotic and computer vision applications such as 3D-reconstruction, object
manipulation and grasping, and SLAM, among others.

Experiments show that the FPGA implementation can use data types with the half the precision
without compromising accuracy in the computed entities. This is an important aspect due to
the restrictions of resources in FPGAs.

Future work will focus on the following aspects: integrating lines detection for local voting
stage, implementing the global voting stage for both circles and lines, downloading the algo-
rithm to the FPGA and performing the experiments in the board, and modifying the architecture
for parallel neighborhood processing.
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ABSTRACT. The shared background independence of spacetime algebra and the impedance ap-
proach to quantization, coupled with the natural gauge invariance of phase shifts introduced
by quantum impedances, opens the possibility that identifying the geometric objects of the
impedance model with those of spacetime algebra will permit a more intuitive understanding
of the equivalence of gauge theory gravity in flat space with general relativity in curved space.

INTRODUCTION

In the preface to the newly published second edition of his seminal text[1], Professor Hestenes
makes four “bold and explicit... claims for innovation” in SpaceTime Algebra:

e STA enables a unified, co-ordinate free formulation for all of relativistic physics, in-
cluding the Dirac equation, Maxwell’s equation, and General Relativity.

e Pauli and Dirac matrices are represented in STA as basis vectors in space and spacetime
respectively, with no necessary connection to spin.

e STA reveals that the unit imaginary in quantum mechanics has its origin in spacetime
geometry.

e STA reduces the mathematical divide between classical, quantum, and relativistic physics,
especially in the use of rotors for rotational dynamics and gauge transformations.

The preface encourages making such claims, lest the innovations be overlooked. ‘“Modestly
presenting evidence and arguing a case is seldom sufficient.”[1] In this spirit, the following five
bold and explicit claims are made for the Impedance Approach to quantization:

e IA is background independent - This fundamental connection with STA goes deep, to
the co-ordinate free formulation essential for quantum gravity[2, 3, 4]. In STA, motion
is described with respect to the object in question rather than an external coordinate
system. Similarly, impedances are calculated from Mach’s principle applied to the two
body problem[5, 6]. Motion is described with respect to one of the two bodies. TA
is background independent. There is no third body, no independent observer to whom
rotations can be referenced, only spin.

e IA contains gravity - Matching quantized impedances at the Planck scale reveals an
exact identity between electromagnetism and gravity [7]. By far the most imprecise of
the fundamental constants, the gravitational constant G cancels out in the calculation.

e IA is gauge invariant - Impedances shift phase. Quantum impedances shift quantum
phase. In gauge theories phase coherence is maintained by covariant derivatives. In TA
coherent phase shifts are introduced by the impedances. IA is gauge invariant.

e A is finite - In IA the quantization scale is taken to be the electron Compton wave-
length. Low and high energy impedance mismatches provide natural cutoffs as one
moves away from the quantizaton length. No need to renormalize. IA is finite.

e IA is confined - Reflections from the natural cutoffs of the impedance mismatches
provide confinement to the vicinity of the quantization length.

The presence of gravity in IA in conjunction with the coordinate-free background independence
common to STA and IA invites the conjecture[8] that scale dependent impedances (Coulomb,
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2 QUANTIZED IMPEDANCES IN SPACETIME ALGEBRA

dipole, scalar Lorentz,...) of IA can be associated with the translation gauge field of gauge
theory gravity [9, 10, 11, 12, 13, 14] and scale invariant impedances (quantum Hall/vector
Lorentz, chiral, centrifugal, Coriolis, three body,...) with the rotation gauge field.

Let us see how this comes about, and what consequences might follow.

HISTORICAL PERSPECTIVE ON THE IMPEDANCE APPROACH

Given the practical everyday utility of the impedance concept in technical applications, it is
not surprising that one finds the most helpful historical introductions and expositions not in
the academic literature, but rather in that of technologically advanced industries, where proper
application of the concept is essential for economic success [15, 16, 17, 18].

This inadvertent divorce of theoretical from practical has profound consequences for quantum
field theory (QFT), where the Hamiltonian and Lagrangian formalisms focus upon conservation
of energy and its flow between potential and kinetic, rather than upon that which governs the
flow, the impedances.

The most rudimentary example can be found at the foundation of quantum electrodynamics
(QED), in the photon-electron interaction. The formidable breadth of the crack through which
the impedance concept has fallen becomes apparent when one considers that the near field pho-
ton impedances [19] shown in figure 1 cannot be found in the physics textbooks of electricity
and magnetism, QED, or QFT [20].

What governs the flow of energy in photon-electron interactions is explicitly absent from the
Jformal education of the PhD physicist.

The significance can be seen by examining energy flow between a 13.6 eV photon and the
quantum Hall impedance of the electron. The figure illustrates the scale-dependent photon
near-field dipole impedance that permits energy to flow without reflection between Rydberg
and Bohr, between photon and hydrogen atom. However, what is lacking in the impedance
match is the corresponding scale dependent electron dipole impedance.

The force operative in the quantum Hall effect is the vector Lorentz force. Impedance quanti-
zation is a possibility for all forces [6]. Quantizing with electromagnetic forces only and taking
the quantization length to be the electron Compton wavelength gives the impedance network
of figure 2, where the electron ‘external dipole’ impedance match to the photon is represented
by the large blue diamonds. The nodes of the network are strongly correlated with the unstable
particle coherence lengths [21, 22], suggesting that, as in the hydrogen atom, energy flows to
and from the unstable particle spectrum via this network of electron impedances.

If impedance quantization is both a fact
of nature and a powerful theoretical tool ‘classical Compton Bohr Rydberg

(as explicated later in this paper), how ’ quantum Hall =

is it not already present in the Standard o T
Model? One might suggest that the ab- \ §
sence is simply an historical accident, ' '
a consequence of the order in which éw ph°t°n><>_-
experimentalists revealed relevant phe- i el Va /

nomena [20]. The scaffolding of QFT 0 — magnetic __—— typical 7]

was erected on experimental discoveries //

of the first half of the twentieth century, 1

on the foundation of QED, which was — T cton energy reoe

set long before the Nobel prize discov-

ery of the scale invariant quantum Hall FIGURE 1. Electron quantum
impedance in 1980 [23]. Hall and photon near and far field

impedances vs. photon energy [19]
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FIGURE 2. The ‘One Slide’ [35]

The discovery of exact impedance quantization was greatly facilitated by the scale invariance.
This classically peculiar impedance is topological, the measured impedance being independent
of the size or shape of the Hall bar, independent of the size or shape of the resistor that governs
the flow of current. Prior to that discovery, impedance quantization was more implied than
explicit in the literature [24, 25, 26, 27, 28, 29, 30]. Early mentions include the 1955 paper of
Jackson and Yovits [24] and the 1957 paper of Landauer [25].

The 1959 thesis of Bjorken [26] presents an approach summarized [27] as “...an analogy be-
tween Feynman diagrams and electrical circuits, with Feynman parameters playing the role of
resistance, external momenta as current sources, and coordinate differences as voltage drops.
Some of that found its way into section 18.4 of...” the canonical text [28]. As presented there,
the units of the Feynman parameter are [sec/kg], the units of mechanical conductance [31].

It is not difficult to understand what led Bjorken astray, as well as those (including the present
author) who have made more recent similar attempts [5, 32, 33, 34]. The units of mechanical
impedance are [kg/sec]. One would think that more [kg/sec] would mean more mass flow.
However, the physical reality is more [kg/sec] means more impedance and /ess mass flow. This
is one of many interwoven mechanical, electromagnetic, and topological paradoxes [35] to
be found in the SI system of units, which ironically were developed with the intent that they
“...would facilitate relating the standard units of mechanics to electromagnetism.” [36].

With the confusion that resulted from misinterpreting conductance as resistance and lacking the
concept of quantized impedance, the anticipated intuitive advantage [28] of the circuit analogy
was lost. The possibility of the jump from a well-considered analogy to a photon-electron
impedance model was not realized at that time.

Like the first Rochester Conference on Coherence and Quantum Optics in 1960, the 1963 pa-
per/thesis by Feynman and Vernon [29] on the “Interaction of Systems” was motivated by the
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4 QUANTIZED IMPEDANCES IN SPACETIME ALGEBRA

invention of the maser. The authors devoted a thesis to concepts needed for impedance match-
ing to the maser. Lacking again was the explicit concept of quantized impedance.

While the 1970 paper by Landauer [30] somewhat clarified his earlier work, the explicit concept
of impedance quantization remained obscure.

Quantization of mechanical impedance in the hydrogen atom was introduced in a 1975 unpub-
lished note [5]. However, the quantity with units [kg/sec] was interpreted as mass flow in the
deBroglie wave, with confusion arising again due to the inversion in the SI system of units.

Had impedance quantization been discovered in 1950 rather than 1980, one wonders whether
the concept might have found its way into the foundation of QED at that time, before it was set
in the bedrock. As it now stands, the inevitable reconciliation of practical and theoretical, the
incorporation of impedances into the foundations of quantum theory, is paradigm-changing.

THE IMPEDANCE MODEL

Given the experimental evidence of quantization in the photon and quantum Hall impedances
and the realization that mechanical impedances can be calculated from Mach’s principle ap-
plied to the two body problem [5], it is a short step to introduce the (inverse square of) line
charge density needed to convert mechanical impedances [6] to electrical, where techniques for
calculating electromagnetic interactions between the objects of Geometric Algebra are known.

With electromagnetic fields only, taking maximal symmetry between electric and magnetic,
and taking the simplest geometric objects needed for a realistic model [6] gives

quantization of magnetic and electric flux, charge, and dipole moment

three objects - flux quantum (no singularity), monopole (one), and dipole (two)
confinement to a fundamental length, taken to be the electron Compton wavelength
the photon

In seeking to link IA to STA, one possibility is to explore the correspondence between the
geometric objects of the two approaches, as shown in figure 3:

The calculated coupling impedances of

the interactions between these geomet- . .

. . . item marker symbol GA object
ric objects[6, 21, 37], the coupling

1mpedances‘0f the modes of t‘he moFlel, e'GCm(t? flux o, bivector
are shown in figure 2. Of immediate quantum

interest in terms of defining the com- magnetic flux " bivector
ponents of the Dirac wavefunction are quantum ®

the modes intersecting at the electron electric dipole 'S de vector

Compton wavelength, including those

of the .511 MeV photon. The energy magnetic dipole 4 He vector

of a photon whose wavelength is the | jectric monopole u Ge scalar

electron Compton wavelength equals the

.511 MeV rest mass of the electron. FIGURE 3. Possible linking of a

The modes at the .511 MeV node that is subset of the objects of IA with STA
matched to the 377 Q photon impedance fall into one of three categories:

e self-interaction between the electric and magnetic flux quanta of the photon
e interaction between the flux quanta of the photon and the electron modes
e self-interaction of the excited electron modes

The three categories are stages in the transfer of energy from photon to electron. Results of the
geometric products that describe these interactions are shown in figure 4.
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In the first stage the coupled magnetic

K . . geometric resulting
and electric flux quanta of the photon are mode Interaction | = duct STA grades
propagating in free space [38]. The geo- seudoscalar
metric product of the two flux bivectors photon self $eds + scalar
delivers a pseudoscalar and a scalar. —

X . photon-electron mutual Oty sk B
In the second stage, which describes ex- +scalar
citation of th§ electrpn by the photon, shoton-electron N deb pseudovector
we have four interactions, each between +vector
one of the flux quanta of the photon pseudovector
. . photon-electron mutual sebe
and one of the geometric objects of the + vector
impedance model as shown in figure 3. bivector
photon-electron mutual s + scalar
Here the two flux quanta of the free
d I
space photon start to decohere due to the | stationaryphoton self 0ch pseudoscalar
. . o B + scalar
opposing phase shifts of the capacitive
. . . bivect
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to his treatise on quantum theory in near- . .
field electrodynamics [39]. electromagnetic self dets bivector
dipole + scalar
g .
Matter-attached fields are unavoidably scalar Lorentz self Gede bivector
present in the near-field... and in the co- - |
. . . . . Coulomb se scalar
variant notation their quantization leads ovom deqe

to the scalar and longitudinal photons,
and then by a certain unitary transfor-
mation to gauge and near-field photons.”

FIGURE 4. Grades of the photon-
electron interaction at .511 MeV

In near-field electrodynamics “The longitudinal electric field is always of crucial importance...this
field involves the difference between the longitudinal and scalar photons”. [40]

The ‘certain unitary transformation’

( i _1l ) is complex. Applying this transformation to the scalar and longitudinal photon

wave functions delivers their ‘real’ sum (the gauge photon) and ‘imaginary’ difference (the
near-field photon) [40]. The gauge photon carries the phase information (not a single measure-
ment observable) that permits the instantaneous non-local projection of entangled photons into
complementary eigenstates [22]. In the impedance model the associated impedance is scale
1nvariant.

Assigning the experimental reality of non-local state reduction of entangled photons to the
gauge photon implies the reality of the near-field photon in the excited states of the electron.

Keller’s treatment doesn’t employ STA. Presumably the geometric aspects of i in the transfor-
mation matrix are not yet understood, and certainly not by the present author. With that in mind,
it should be noted that the above interpretation assumes that Keller’s longitudinal and near-field
photons can be identified with the corresponding pseudoscalars of STA shown in figure 4.

In the third stage we have the self-interacting modes of the electron model that were excited
by the impedance matched photon. These modes comprise an even sub-algebra of STA. The
complete algebra appears only in the photon-electron interaction of the second stage.

In the impedance approach the ‘electron’ is a coupled mode family obeying linear superpo-
sition. The correlation of the network nodes with the coherence lengths shown in figure 2
suggests that the elementary particle spectrum consists of excited modes of the impedance net-
work, that the network comprises the ‘structure of the vacuum’ as cited earlier [38]. Any of
them, when taken as components of the Dirac wave function, should deliver meaningful results.
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6 QUANTIZED IMPEDANCES IN SPACETIME ALGEBRA

The initial conjecture [8] relating IA and STA was based upon the distinction between scale
invariant (rotation gauge field) and scale dependent (translation gauge field) impedances. With
the one known exception of the massless photon, which is unique in having both scale invariant
far-field and scale dependent near-field impedances, the invariant impedances cannot commu-
nicate energy/information, only quantum phase. This distinction plays a fundamental role in
entanglement, non-locality, and state reduction [22], the black hole information paradox [41],
the chiral anomaly [42], time asymmetry [43], the extreme early Big Bang [44] and at the
foundational level in interpretations of quantum mechanics [45].

The centrifugal impedance shown in figures 2 (green dots) and 5 (green line) is scale invariant.
Scale invariant impedances cannot be shielded [43]. The vector Lorentz impedance of the
Aharonov-Bohm effect is one example. The question here is what role invariant impedances
might play in gravitation. The equivalence principle as stated by Heisenberg [46] reads

“...gravitational forces can be put on the same level as centrifugal or other forces that arise as
a reaction of the inertia...”

THE PLANCK PARTICLE

Just as the energy of a photon whose wavelength is the electron Compton wavelength equals
the electron rest mass, the energy of a photon whose wavelength is the Planck particle Compton
wavelength is the rest mass of the Planck particle and its associated event horizon. This is the
‘electromagnetic black hole’, the simplest Planck particle eigenstate. A more detailed model
can be had by taking the quantization length to be not the electron Compton wavelength, but
rather the Planck length, resulting in the network of figure 5.

L1019 -
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& | ™ T |
ZelecDxpmaplL 2 Rydberg | top, Higgs, Z, W | Rydberg | |
*

h B i
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FIGURE 5. An impedance template for the Big Bang - a subset of the electron
and Planck particle impedance networks, showing a .511 Mev photon entering
from the right and the ‘primordial photon’ from the left. The green line repre-
sents both quantum Hall and centrifugal impedances [7, 41, 44].

Calculating the impedance mismatch between electron and Planck particle gives an identity be-
tween electromagnetism and gravity [7, 41]. The calculation proceeds in the same manner as the
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impedance match of the 13.6 eV photon near-field impedance to the quantum Hall impedance
at the Bohr radius, by attempting to match the .511 MeV photon near-field impedance to the
quantum Hall impedance at the Planck length. Similar calculations can be done with any of the
coupled impedances of figure 5.

The gravitational force between these two particles is equal to the impedance mismatched elec-
tromagnetic force they share. This result suggests that both gravity and rest mass are of electro-
magnetic origin. While strong classical arguments have been advanced against electromagnetic
theories of gravity [47], preliminary examination suggests that such arguments fail when the
full consequences of quantum phase coherence are taken into consideration.

IA delivers exact results at the Planck particle event horizon (and beyond to the singularity,
completely decoupled by the infinite mismatch to the dimensionless point). Relativistic curva-
ture corrections are unneeded. The impedance model is flat space.

MASS

At the nine digit limit of experimental accuracy, the exact identity between gravity and electro-
magnetism that was found by impedance matching to the Planck particle [7] limits the energy
transfer between these two particles to the rest mass of the electron. In this sense the electro-
magnetic interaction with the Planck particle can be considered a route to the ‘origin of mass’,
and the Planck particle almost but not quite virtual. The Casimir effect comes to mind.

The impedance model offers a simple second route to mass. The model is comprised of self-
interacting electromagnetic fields in flat space, configured as geometric objects in the flat space-
time algebra of gauge theory gravity, and confined by impedance mismatches as one moves
away from the quantization scale. The mode impedances of the self-interacting geometric ob-
jects are shown in figures 2 and 5.

The second ‘origin of mass’ in the impedance model is the stored energy of the electromagnetic
fields. Calculating that energy [48] at the relevant quantization scales gives the electron mass
at the limit of experimental accuracy, the muon mass at one part per thousand, the pion at two
parts in ten thousand, and the nucleon at seven parts in one hundred thousand. The pion and
muon calculations invoke a supersymmetry of sorts. The nucleon calculation is admittedly a
bit of a kludge, but interesting none-the-less.

GRAVITY

The relatively recent discovery that Gauge Theory Gravity in flat space is equivalent to General
Relativity in curved space [9, 10, 11, 12, 13, 14] is both astounding and a paradigm shift of
itself. Why work in curved space all these years if one can work so much more simply in flat
space? How did it get this way?

Like the absence of impedances from QED, this is another historical accident. It arose because
the geometric algebra of Grassman and Clifford was lost with the early death of Clifford and
the ascendancy of the simpler Gibbs’ vector formalism in the late 19th century. Clifford alge-
bra persisted in various forms without geometric insight until rediscovered and expanded by
Hestenes starting in the 1950s. Einstein and company did not have that tool at hand, worked
with tensor calculus (which is a subset of geometric algebra/calculus, as is the Dirac algebra
of quantum mechanics) in curved space. Whether one describes gravity as the effect of mass
curving space or quantum phase shifts, the claim here is that they yield equivalent results.

Just as mass is of electromagnetic origin in the impedance approach, so must be gravity. What
then of the graviton? Which of Keller’s photons [49] is the graviton?

95



8 QUANTIZED IMPEDANCES IN SPACETIME ALGEBRA

Some guidance comes from two essential characteristics of gravity that, upon first consider-
ation, would seem to rule out an electromagnetic origin [47]. First, unlike electromagnetic
forces, it appears that gravity cannot be shielded. However, as mentioned earlier in the context
of both the centrifugal force and the Aharonov-Bohm effect of the vector Lorentz force, scale
invariant impedances cannot be shielded [22, 43]. And second, gravity appears to have only one
sign. We observe only attractive gravitational forces. However again it seems these impedances
have a particular characteristic that is relevant here. These impedances are DC. As such, they
can account for the attractive-only character of gravity. In the case of observables it seems that
they act by retarding the phases [50], or the space bending if you will. In the case of the ‘dark
matter/energy’ of the impedance model [6] the possibility exists that either or both the phase
or/and its effect upon such matter/energy would be repulsive rather than attractive.

Given that linear superposition applies to this quantum network of nonlinear coupled modes (!),
it would seem that any of the scale invariant impedances would be equal to the tasks outlined
above, as appropriate for a given set of initial conditions. The phase shifts of Gauge Theory
Gravity could be communicated by any of the scale invariant impedances. Yet a paradox re-
mains, apparently topological and one of many. The scale invariant impedances can do no
work, can only communicate quantum phase. And we all know gravity can do work.

Given that gravity is of electromagnetic origin and that Keller’s three-stage formalism gives a
reasonable approximation of the near field photon-electron interaction, we return to the question
of which of Keller’s photons, the ‘gravity photon’, corresponds to the graviton of quantum GR.

For the interaction between two electrons, gravity is about forty-two orders of magnitude
weaker than the Coulomb force. If we take a characteristice length to be the electron Compton
wavelength (about 107'2 meters), or equivalently the wavelength of a .511MeV photon, then
the wavelength of the ‘gravity photon’ will be about forty-two orders of magnitude greater, or
about 10°° meters. The radius of the observable universe is about 102 meters.

The point is that our material existence appears to be in the extreme near field of the ‘gravity
photons’ of almost all of the mass in the universe. The almost arises due to the 7 phase shift of
those ‘gravity photons’ whose average energy is above a few GeV. The phase shift due to field
oscillation reverses the effective direction at around the present age of the universe. The high
energy portion of matter becomes repulsive on the scale of the universe.

It can be argued that in the extreme near field the scale dependent impedances appear scale
invariant, due to the flatness of the phase as the amplitude goes to zero. One might conjecture
that this is what permits the scale dependent ‘Coulomb’ impedance of the monopole mass to ap-
pear to have the ‘cannot be shielded’ property of the scale invariant impedances. Hopefully the
topological character of geometric algebra as informed by quantized impedances will provide
a proper formalism for such a conjecture.

CONCLUSION

Trusting and following the rigorous logics of both the geometric algebra of Grassman and
Clifford and the foundations of Mach’s intuitions regarding the origins of mass have led most
unexpectedly to an electromagnetic model that offers the possibility of a formalism bringing
together electromagnetism, nuclear forces, and gravity. One hopes that this possibility will be
recognized, and eagerly awaits the work by mathematical physicists with geometric algebra as
informed by impedance quantization. Please. If it exists, show us that formalism.

Equally or more promising is the integration of impedance quantization in the toolbox of the
nano-engineer, the quantum chemist, the biologist,... The economic future of impedance quan-
tization appears to be in AMO/condensed matter physics [52].
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In closing, it seems appropriate to repeat a quote attributed [51] to Einstein:

“To understand the electron would be enough.”
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ABSTRACT. This paper describes a novel method to solve the inverse kinematics of a humanoid
robot anthropomorphically configured of 6 degrees of freedom using conformal geometric alge-
bra. Creating different geometric entities such as lines, planes and spheres in order to achieve
the desired position and orientation of the body and the foot, re-configuring individually the
amount of rotation for each joint. Taking into account the avoidance of obstacles and preventing
self collision. The effectiveness of the proposed algorithm is proved and tested via practical
experiments. Results indicate that the proposed algorithm achieves the expected behavior.

1. INTRODUCTION

Humanoid robotics have been actively researched in the last twenty years. This is because they
are intended to be used in human societies and therefore are required to have high mobility. The
motivation of that is the suitability of the biped structure for tasks in the human environment,
and the goal of the studies in this area is to reach the human walking dexterity, efficiency,
stability, effectiveness, and flexibility. There are many problems that involve the manipulation
of a humanoid robot, this paper focuses in explain a new method to obtain the required angles
of a six degrees of freedom humanoid leg anthropomorphically designed given a desired stance
of the hip and foot using all the benefices that the geometric algebra can provide, creating
geometric entities as conformal points, spheres, lines and planes which are transformed via
rotors, translators and motors defined in this algebra. Because the solution of the system is
open, there exists an infinity amount of solutions that can be found for a given stance and those
solutions can end in a unreachable configuration for the humanoid robot physical possibilities
including for instance a self collision, that is the main contribution of this proposal, using
the advantages that the conformal geometric algebra provides, some geometric restrictions are
imposed to the movement of the humanoid leg resembling the physical possibilities of a human
leg and re-configuring one or more joints of the humanoid leg without changing the entire
attitude of the leg.

This paper is organized as follows. A brief introduction to geometric conformal algebra, the
description and creation of geometric entities as well as the rotors, translators and rotors are
described in Section 2. The procedure followed to obtain the equations that link the desired
pose with the solution of the inverse kinematics is given in section 3. Practical results with the
proposed method are given in Section 4. Finally, conclusions are included in Section 5.

2. CONFORMAL GEOMETRIC ALGEBRA

One of the main characteristics of the Clifford algebra (Geometric Algebra), is that allows to
represent entities of higher order with a compact symbology with lineal operations. The lines,
planes or spheres are examples of entities of higher order and they are represented as a unique
elements of the Clifford Algebra. In this section, the most basic concepts of Geometric Algebra
are overviewed, for further information reefer to [1] [2].
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The geometric algebra of an Euclidean 3D space % has a base in points, ergo, it works with
vector which represents points in the space, the motor algebra %;071 works with a base of
lines. Using the Minkoswski plane [1] to generate null vectors, the Euclidean space R" can
be expanded to R 1! = R*@RI!. This expansion of the Euclidean space results in the
geometric conformal algebra %, 1. This new algebra called Conformal Geometric Algebra,
has the characteristic of taking the sphere as unit of calculation, which allows work with other
geometric primitives (lines, points, planes, circles, etc.) In general an Euclidean point x(R") is

represented in R"*! as

(1 X, =X+ 0ey+ fee

where a and B are scalars and ¢, e., denotes a null base [1]. The conformal vector space
derived of R? is denoted as R*!. This algebra corresponding to %41 has a vector base given by
and has 2° elements.

The geometric entities of the geometric conformal algebra are presented in Table 1.

Entity IPNS G | OPNS (dual) G
Sphere s:p+%(p27p2)em+eo 1 | s*=aAbAcAd 4
Point x=x+ %xzeereo 1 | x*=(-Ex— %xzeoo +e)Ig 4
Plane T =NIg —des 1 | m*=esNaNbAc 4
N=(a—b)A(a—c)
d=(anbAc)Ig
Line L=P NP, 2 | L*=exNalAb 3
=rlg+e.MIg
r=a-b
M=aAb
Circle z=S51As] 2 | Z¥*=aAbAc 3
s; = (ew-2)zZ
2
pz= (eD:M)z
Point pair | PP =51 AsyAs3 3 | PPP=albX*=exANx 2

TABLE 1. Representation of entities in conformal geometric algebra.

Conformal transformation of geometric entities it is called to that in which preserves its form.
The transformation does not affects the angles of the figure y preserves the straight lines and
circles. Any conformal transformation in R” is expressed as a composition of inversions in
spheres and reflections in hyperplanes. In general a conformal transformation is defined as

2) g(x) = GxG ' = ox

where x € R"tL1 G is a versor and ¢ a scalar.
The conformal transformations are shown in Table 2.

Type g(x)inR" | Versorin %, o(x)

2
: L 1,2 x—p
Inversion xp TP S=P— 3P € ( )
Reflection | —nxn+2x6 | P=n+ fes 1

Translation x—t T=1+ %teoo 1

Rotation RoxRg Ro =exp (— gl) 1
TABLE 2. Conformal transformations.
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3. INVERSE KINEMATICS

The kinematic layout of the lower limbs is the basic determiner in order to imitate the human
movements. The leg is created of two segments which determine the possibilities of the hu-
manoid robot such as the length of a step or how far can the foot reach. The human articulation
of the hip is a perfect ball-and-socket joint, it is reproduced in this bipedal humanoid robot with
tree concurrent revolute joints which are successively orthogonal. The human knee essentially
performs the simple kinematic function of flexion-extension, then the use of a single transversal
axis joint is therefore the easiest solution. Finally, the rotations in a human ankle and foot are
complex but it is to be noted that two rotational axes are functionally required in the ankle, then
a universal joint is used. This configuration is basic to emulate the human movements [3] and
is the used in this paper.

To explain the inverse kinematics of a humanoid robot, a 6 degrees of freedom (DoF) model,

Body

@
& ¢
=\ §
L8 DY

A

FIGURE 1. Structure of a 6 DoF biped robot leg.

all actuated, of one Leg anthropomorphically designed shown in Fig. 1 is used. The other
leg can be treated in the same manner. Usually, a desired trajectory of the body and the feet
of a humanoid robot considering stability are given to satisfy the movement of the humanoid
to achieve some task, for example walking, squats, lying down, crawling and getting up etc.
Then, the amount of joint rotation of the hip, knee and ankle must be found with this infor-
mation. There are different forms to solve this problem, i.e. the analytically and numerical
methods [4], but singularities, position of global and local coordinates, or the reconfiguration
of the entire leg are the main problems of those approaches. For that, a new method using
conformal geometric algebra is proposed.

The desired position and attitude of the body are given of the form x;,, yy, 2, 04, Bp, ¥ for the x,
y and 7 axis, the pitch, yaw and roll with respect to a world frame coordinates. And the leg, xz,
YL, 2L, Or, Br, 7 for the x, y and z axis, the pitch, yaw and roll respectively. It is supposed that
the position and orientation of the leg are given in therms of a reference fixed coordinate system
in the body. Then, in order to simplify the equations is defined D as the distance between the
body and the hip joint, A and B are defined as the upper and lower leg length as is showed in
Fig. 1. Three rotors describing the desired pitch, yaw and roll of the leg are created of the
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form:
3) Ry =e 2%
R, = o 2BLesi
RZL — e—%YLelz
and a general rotor describing the entire desired attitude of the leg is given of the form:
4) RL. =Ry, Ry, -R,,.
Then, with the desired euclidean coordinates, a translator is formed:
5) T, = e—%(xLel+}'L62+ZLe3)eoo‘
Using Egs. (4) and (5), a motor describing the desired pose of the leg, in therms of the body
frame, is given of the form
(6) M; =T -Ry.

A conformal point that describes the fixed frame in the center of the body, another which
describes the initial position of the hip joint using the known length D, and one last that shows
the initial position of the ankle joint using A and B constant, are created

1
@) Xy = 0eq + 0e; + Oesz + E(Oel + 0e; + 0e3)%ee + €
1
xp = —Dej +0ey + 0es + 5(—Del + 0e3 + 0e3) e + €

1
x5, = —De; — (A+B)es +0ez + 5(—De1 — (A+B)ez +0e3)?ee. + €.

In order to find the pose of the ankle joint, the motor of the leg is applied to Eq. (7) of the form

(8) Xf:ML-(XfW)'ML.

Two spheres are defined with center at the points of Eqs (7) and (8)
1

©9) s1=x)— EAzeoo

1.
szzxjcfEB oo,

and the wedge product is applied between spheres of Eq. (9). As is shown in Fig. 2 this yields
an intersection circle,

(10) Z =51 \s).

.

b

S>

FIGURE 2. Intersection of spheres s; and s,.
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A line is created in the e3 coordinate and transformed with the motor of the leg, in order to find
the desired ankle joint,

(11) Ly =M -(egNe3 New) M.
A line normal to the circle of Eq. (10) is generated in the form
12) L. =ZNe,

then, a plane which intersects the circle of Eq. (10) in the largest distance from the center to
the edge is formed using Eqgs. (11) and (12)

(13) P= (L (eoNew)) ALs,

this creates two intersection points that represents the intersection of the two geometric entities
of Egs. (10) and (13) which are mathematically given by

(14) pp=ZN(P—1I).

FIGURE 3. Pair of points.

Hence, two possible configurations for the knee joint pose are found as the Figure 3 shows. In
order to achieve the anthropomorphic design, the restriction of taking the positive point is set.
Given the knee point described by

(15) ppa=pp—1
= PP +\/PPa " PPa
PPd " €

Hitherto the tree important points x,, x; and x; of the desired configuration given the pose of
the body and the foot have been found. With those, three lines representing the links distance
between each joint are created of the form using Egs. (7) and (15)

(16) Linkp = e N\ Xy A\ Xp,
Links = ec Nxp A Xy,
Linkg = e, A\ xy, AXxg,

this is observed in Fig. 4.
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FIGURE 4. Creation of lines representing the links distance.

Finally with this information, the amount of rotation of each joint is easily calculated. The
angle between lines Link, and Linkg of Eq. (16) shows the roll of the knee

v/Linky - Linkg
|Linka| - |Linkg| )

To find the roll of the spherical joint at the hip, a reference plane is created of the following
form

(17) g4 = arccos (

(18) P, = e3 Axp AXg N e,

and a plane parallel to the frontal plane of the humanoid robot which moves as the spheres
move is formed by

(19) P,
With Egs. (18) and (19) the amount of rotation is described of the form

= Xy ANXp N X N\ €co.

T /Pi,-Pr,
(20) g1 = — — arccos Vi .
2 1P| [Py |

To find the yaw of the same spherical joint, the angle between the links described by the lines
Linkp and Link, of Eq. (16) is simply calculated by

21 T v/ Linkp - Linky
= _——arccos\ —mm—m—mm———— | -
©2=5 |Linkp| - |Linka]

Concerning the universal joint at the ankle, the angle of rotation in the yaw direction is given
using the lines of Eqgs. (11) and (16)

(22) _z arccos M
=5 |Linkg|-|Ls| )

Then, on the occasion to find the amount of rotation at the roll direction of the ankle joint, a
line is created parallel to the sagittal plane of the humanoid robot and transformed by the motor
created in Eq. (6)

(23) Ly, =My -(egNey Aew) My,

using this, the angle is given of the form

(24) g6 = arccos (

/Linkg L3, ) T

|Linkg|-|Ls,| ] 2~

Finally, the last angle which describes the amount of rotation in the pitch direction of the
spherical joint at the hip is calculated. First, several rotors and translators are created using the
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initial conditions of the analysis and the information obtained so far. This will give the virtual
position of the ankle. Those are given of the form

(25) Ty, =e (%)%

Ty, =€~ 1 (De1—Aez+0e3) e
32

With Eq. (25), a general motor to describe the virtual pose of the ankle is formed by

(26) M, = (Th31 ’ (Rh31 'Rhsz ‘Rh33) ) Th3l) ’ (Thsz (Rh34)Th32)'

then, with the initial condition of the ankle of Eq. (7), the virtual point which gives the pose of
the ankle is calculated with

(27) xvf = Mh . ()wa) -Mh.

Furthermore, and in order to make more accurate the calculation, a virtual plane is also formed
by

(28) P,

v = eoo/\xw/\xvf N Xy

Also, a plane is created with the purpose of impose a geometric constraint

(29) Pcf:eoo/\xh/\xk/\x]c.
Then if the distance, calculated as
(30) (fo /\I)(,‘f)/IE7

between the virtual point of the ankle described in Eq.(28) and the restriction plane in Eq. (29)
is grater or equal to zero, the amount of rotation is given by

(Lil’lkB /\Xh) . Pv/

31 3 = arccos -
4 |(Links Ax)[- P |

else is given by

(Li}’lkB /\xh) -Pvf

(32) 3 = — arccos -
4 |(Linkg Axi)]- [P, |

The planes and lines defined in the previous equations can be oriented and translated depending

in the needs of the humanoid robot, defining them with a different pose to achieve a different
configuration, this helps to avoid obstacles. In regard to prevent self collisions, the geometric
restrictions imposed at Eq. (15) and (30) helps to restrict the movement of the links, moreover,
the radio of spheres (9) facilitates obtaining configurations achievable within the space of work
of the biped humanoid robot.

This equations can only be applied to a robot that have the same configuration that Fig. 1, i.e.
if the robot does not have three joint axis intersecting at one point, a different algorithm will be
needed.
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4. APLICATIONS

The verification of the proposed method to solve the inverse kinematics of a biped robot is
tested via simulations and real time. It was applied to the humanoid biped robot prototype
MexOne at the Laboratory of Automatic Control at The Center for Research and Advanced
Studies of the National Polytechnic Institute - Guadalajara Unit shown in Fig. 5. The Figure
(6) shows the constants in meters of the humanoid used to test the inverse kinematics algorithm.

The references trajectories are created for a two steps walking with 5 centimeters length in e3
axis and 2 centimeters of height in e; axis. In Fig. 7 can be seen xy, 75, z7, and yz. The reference
¥p» is considered to be zero, x; is considered as the D constant and oy, By, ¥, Oz, B, Y1 are
fixed in zero, for the left leg.

238.98

E

FIGURE 6. Humanoid biped robot prototype MexOne constants.
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FIGURE 7. Reference trajectories.

In Fig. 8 can be observed the amount of rotation for each joint, in order to follow the body and
leg trajectories. Finally in Fig. 9 a real time implementation of the experiment is shown.

9%
0.1
0
-0.1 \
0 2 4 6

8 10

d, a,
0.01
0.005 0.9
el
S 0 0.8
-0.005 07
-0.01
0 2 4 6 8 10 0 2 4 6 8 10
%
0.1 / )
0
-0.1 1
0 2 4 6 8 10 0 2 4 6 8 10
Time [sec] Time [sec]

FIGURE 8. Joint trajectories left leg.
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FIGURE 9. Real time experiment.

5. CONCLUSIONS

A novel algorithm for inverse kinematics using conformal geometric algebra was showed. Prov-
ing the benefices of using geometric entities such as planes and spheres in order to modify the
amount of rotation of each joint by separate without re-configuring the entire leg of the hu-
manoid, making easier to avoid obstacles and prevent self collision. The algorithm, was proved
with a simple routine of two steps with a humanoid robot prototype.
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COMPOSING SURFACES WITH CONFORMAL ROTORS
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ABSTRACT. Conformal immersions are harmonic and numerically stable surfaces whose tangents scale isometrically,
providing many elegant geometric properties of use in design. This paper maps these forms within the context of dis-
crete differential geometry in order to outline an approach to synthesizing curved surfaces with potential application in
architectural geometry and computer graphics. Using Dorst and Valkenburg’s “Square Root and Logarithm of Rotors”
(2011), we reformulate the rationalization of cyclidic nets, piecewise smooth surfaces characterized and controlled
directly by their tangents.

Keywords: Conformal Geometric Algebra, Cyclidic Nets, Rational Splines, Architectural Geometry, Discrete
Differential Geometry

1. INTRODUCTION

In a remarkable paper from 2011 [11], Dorst and Valkenburg rigorously decompose general rotations in the
3D conformal model of geometric algebra into commuting point pair generators, revealing much of the beauty
and logic in the algebraic machinery that generates any structure-preserving 3D motion (see also Leo Dorst’s
contribution to these proceedings [9]). To explore some of the implications of that work, we outline a parametric
approach to design which composes surfaces from out of that decomposition, suggesting the central role of
conformal rotors in the establishment of a discrete calculus using the geometric algebra mechanism.

The benefits of conformal mappings in design are known. In architectural geometry, discretization of conformal
mappings allows the design of doubly-curved forms with torque-free nodes and consistent offsets [2]. In computer
graphics, conformal mappings have been used to deform meshes intuitively and in a way which preserves details
and textures [6, 5].

Leveraging Dorst and Valkenburg’s analysis of general conformal rotors from orthogonal generators, we reformu-
late the discrete cyclidic nets described by Bobenko and Huhnen-Venedey in [3], who use Lie Sphere Geometry
to build on the original rationalization of Martin in [22] based on Dupin’s cyclides [13]. Our main finding is that
the conformal rotor construction provides a straightforward mechanism for linearly rationalizing these beneficial
surfaces within the already rich context of conformal geometric algebra.

1.1. Background. Cyclidic nets, a method of computer-assisted design introduced by R. Martin in his 1983
thesis, enable the digital designer to construct surfaces by specifying curvature directly at tangents. Motivated by
a desire to develop a technique to form firmly grounded in geometry, Martin showed that these biquadratic meshes
are piecewise smooth patches of Dupin cyclides, and thereby possess a simple algebraic representation. Built with
families of generalized circles, discrete differential geometry over these surfaces exhibits excellent convergence
to the continuous case. As a result, rationalization and efficient evaluation of these surfaces — and their general
form as Darboux cyclides — has been the subject of much research [14, 23]. Some modern techniques, such as
developed by Bobenko and Huhnen in [3], rely on Lie sphere geometry, a projective model of contact-based
geometric constructions closely related to the conformal model of geometric algebra. Others, such as Krasauskas
and Zubé in [20], use geometric algebra to construct generic Darboux cyclidic patches using bilinear interpolation
of quaternion-weighted Bézier arcs.

In other work specific to GA and CGA, Doran explores circle and sphere blending through direct linear interpo-
lation of the primitive elements (that is, without rotors, conformal maps, or logarithms) [7], and Druoton et al
explore constructions of Dupin cyclides by generating the full families of tangent spheres in [12].

With support from the Robert W. Deutsch Foundation.
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FIGURE 2.1. A four-sided principal patch is constructed from four cocircular points with or-
thogonal corners. Principal contact edges lie along circles.

Our current exploration differs from these others in its reliance on orthogonally-composed conformal rotors and
their logarithms to rationalize blends between coordinate surface elements. We emphasize the use of sphere-
to-sphere conformal transformations to discretize these coordinate surfaces, allowing ratios of basic geometric
primitives to guide our rationalization. We provide a more controllable and general result than our experiments
in [4], where we examined the use of interpolated null tangents to create “boosted surfaces”.

We find our technique is firmly grounded in a geometric (spherical) interpretation of curvilinear coordinate sys-
tems, and that within the conformal model our mappings apply as easily to tangents and normals as they do to
points, representing a novel approach to constructing a general operator on a surface.

1.2. Notation. We do not provide an introduction to the mechanics of conformal geometric algebra here. The
references [1, 4, 10, 21] more than suffice as an introduction.

We rely on the 2010 Amsterdam convention for notation of the conformal geometric algebra of R*!, with three
Euclidean basis blades {e;}, homogenizing origin n, = .5(¢_ —e,.), and infinity n. = e; + e_., and null points
p=n,+x+ %xznw. Note that n, and n.. are sometimes identified as e, and e. or just o and oo in other texts.
Brackets (%), around a multivector signify only the k-graded elements of Z. The absence of a subscript (as in
(%)) signifies only the scalar component, (#)(. We use the Hestenes left-contraction inner product | throughout
as our generic dot product.

Following the style of [10], lower case greek letters refer to the dual (inner-product null space) representations
of geometric elements, and upper case greek letters the direct (outer-product null space) representations. Thus
where possible in our algorithms we use ¢ and X for dual and direct spheres, A and A for dual and direct lines,
7 and IT for dual and direct planes, T for point pairs and null tangent vectors, and k for circles and null tangent
bivectors.

I is the 5-blade pseudoscalar of R*!, with duality in the conformal space by multiplication with /! is notated
with a star, as in 6 = £*. Involution of an element X is indicated with the hat symbol £. Finally, we specify rotors,
Z, in calligraphic font and their application to a generic element X via the ’sandwich” product as Z[X| = %#X | %.

2. PRINCIPAL PATCHES

Throughout the literature on parametric surface design with Dupin cyclides, a principal patch is created through
bilinear rationalization of four points on a circle (Figures 2.1 and 2.2). Given these four cocircular points and the
orientation of a frame on one of them, the patch surface is determined. Surfaces constructed out of such patches
are called cyclidic nets. We seek here to develop a system for constructing and discretizing these patches.

2.1. Outline of the Algorithm. To rationalize a principal patch — that is, to evaluate the position of a point p at
coordinate (u,v) — we seek a particular conformal mapping of a 2-manifold into 3D f: M — R3. In what follows,
we will formulate this map in terms of two orthogonal transformation generators, 7, and 7,, each one a 2-blade
point pair in the conformal geometric algebra of R*!,

110



COMPOSING SURFACES WITH CONFORMAL ROTORS 3

FIGURE 2.2. Given four points on a circle, one frame of orientation at one point (i.e. 3 degrees
of freedom) is sufficient to fully characterize the patch.

FIGURE 2.3. To construct a cyclidic patch, we generate rotors from spheres tangent to the
circular edges of the patch. Individual principal ’simple’ rotors %, and %, in the u and v
directions of a patch are calculated as the square root of the normalized ratio of coordinate
surface spheres. The logarithms of these rotors are point pairs. Here we render their dual
representation as circles, both real (in the case the principal coordinate surface spheres intersect)
and imaginary (when they do not).

Labelling each side of the patch ug, u1, vo, and v; (Figure 2.1) maps our edges to a 2-dimensional (u,v) -
coordinate system in the range of [0, 1] where the subscript denotes a constant coordinate value, e.g. ug = 0. One
transformation generator, T,, will be responsible for interpolating ug to u; and the other, 7,, will be responsible
for interpolating v to v;.

Each edge is part of a coordinate curve circle k*0,x*1,x"0, and k"! which, as we will see, are themselves each
part of larger coordinate surface spheres c*0,6"1,6"0, and 6”!. We define 7, and 7, as the principal logarithms
of conformal rotors %, and %, which we define as the square root of the normalized ratio of coordinate surface

u uO vV VO .
spheres. Thus, %, = / Hg“:i;g“oll and %, = 1/%. These rotors encode the transformation that take one
constant-coordinate surface (¢%0) to another (¢*1).

The logarithm of these rotors are 2-blade point pairs which can be linearly weighted to interpolate the transfor-
mation. In Figure 2.3 we draw the 2-blade’s dual representation as circles. The geometric constraints on the
cocircular system ensures that the point pair generators are orthogonal and commute, a condition which allows
us to compose them into a general conformal rotor: K,,,, = %, %,,, With u; and v, each evaluated in the range of
[0,1] and #,, = ¢™*. These rotors are applied to one corner of the patch, p, at (ug,vo) in order to transform it to
a point at (u,,v;). Thus,

2.1) f(ur,ve) = Ko, [P]

111



COMPOSING SURFACES WITH CONFORMAL ROTORS 4

2.2. Constructing Tangents. To better seat our treatment within the larger construction of a geometric calculus,
we will emphasize the direct use of fangent elements accessible in the conformal geometric algebra. This also
enables us to leverage the findings of Bobenko and Huhnen-Venedey in their use of Lie geometry, based as it is
on contact elements. We therefore make explicit use of several basic operations in CGA relating tangent elements
to round elements.! The first,

2.2) k=p|s

is the extraction of the tangent of a direct spheret ¥ at a point p where the hat " signifies an involution (on a
k-graded element: X; = (— 1)ka). For a sphere X, equation 2.2 returns a null-valued (zero radius) circle. For a
circle x the same expression returns a null-valued point pair:

23) T=plk

As a corollary we can build round elements from a tangent and a point:

2.4) K=pAT

which is the direct construction of a circle from a point p on it and tangent vector element 7 along it. Similarly,

2.5 E=pAK

is the direct construction of a sphere from a point p and tangent bivector element k. We also find it a useful
to remember that homogenous tangent vector elements T and K are easily constructed by translation of a tan-
gent vector and bivector at the origin, and that geometrically speaking they are null point pairs and null circles,
possessing a weight and an orientation but no radius.

2.3. Triply Orthogonal Coordinates. As Figure 2.4 demonstrates, we can begin our synthetic construction with
the notion of a triply orthogonal local frame {ex|k € 1,2,3} at p. To emphasize the fact that our frame is a null
tangent frame at a point in space, we write {7} to signify the tangent vectors {e; } have been translated to point

p:

(26) T = L?p [n(;Vi]

where .7}, is a translation rotor and v; is the Euclidean vector of our local e;.

We label Gj’: the principal contact sphere with normal e; at p along direction e, and should be understood as rep-
resenting a constant coordinate surface along the e; direction. The raising of the index associates our construction
with Hestenes’ notation for curvilinear coordinate systems in [16]. In the case that it is unambiguous in which
direction we are moving, we drop the lower index. 2 In our notation for cyclidic nets of the previous section, we
omit the subscript since it is clear in which direction we are moving, and instead specify only the coordinate that
is held constant. The full notation for 6“0 would read 6, to signify a surface of constant coordinate (1 = 0) as
we move the in the v direction along the patch.

The coordinate curve in the ¢; direction is defined as the union of constant coordinate surfaces /A Gij ,J #i. Note
that in this sense each surface Gi] encodes a partial derivative % and each curve k; can be thought of as the
exterior product of partial derivatives which contribute to it’s definition (see footnote 2).

lMany components of these algorithms can be found in the essential table 14.1 on page 407 of [10], and in section 15.2 of that text.

I [16], Hestenes proposes the “tangential derivative as the most fundamental of all concepts of derivative”, and explains that the relation
between a tangential frame {e; } on a manifold and its inverse reciprocal frame {e*} reveals that all “the coordinate curves are intersections
of coordinate surfaces” (p.34, emphasis in original). Intriguingly, this relationship is precisely Dupin’s theorem, and suggests to us that
the rationalization of cyclidic transformations using the mappings of orthogonal conformal rotors could provide clues as to how to explore
differentiable manifolds in general in the conformal model — namely, by treating reciprocal tangent frames as normals to some dual sphere
coordinate surface.
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FIGURE 2.4. To construct triply orthogonal curvilinear coordinate surfaces we first consider
an orthogonal tangent frame {e¢;} at p with k = 1,2,3. Coordinate surfaces {Gj’?} are spheres
tangent to the frame. We use superscripts to denote the coordinate that is held constant, and
subscripts to denote the tangent direction along which we travel. To create coordinate curves,
we specify two surfaces (in blue) with e3 as a normal, each one corresponding to a different
tangent direction. The coordinate curves k) and k; are circle intersections of these contact
surfaces, a relation known as Dupin’s theorem. Picking two points p; and p, along these
curves defines a circle with p.

2.4. Null Tangents as Coordinate Surface Generators. One can create coordinate surfaces by applying a
transversion (or boost) at p in the e; direction to a dual plane through p with e; normal, thereby bending it
into a dual sphere through p. As we discussed in [4], such a curvature generator is constructed by translating a
tangent vector from the origin to p, thereby creating a null point pair T which squares to 0. Our coordinate surface
rotor becomes

T
2. =1
2.7 $74 2

a simple result which stems directly from following Dorst and Valkenburg’s rules for exponentiation of a 2-blade:

(2.8) & = e "/? = cosh(1/2) — sinh(7/2)

where
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FIGURE 2.5. a) Given four cocircular points and one frame at one point, all other frames are
calculated by applying equation 2.12 counter-clockwise from the known frame. We thereby
extract tangent bivectors from triply orthogonal coordinate surfaces generated at each point.
Here we draw the normalized dual of the resulting tangent bivectors. Note that consecutive
tangent frames are reflections of each other. b) To generate a patch, we will interpolate between
two orthogonal coordinate surfaces bilinearly. ¢) Coordinate curves along the edges of our patch
are circles. d) The rotor ratio of coordinate surfaces applied directly to the circular edge curves
begins to suggest a surface.

sinh(vx?2) e w2
X ifX2>0
(2.9) sinh(X) = ¢ X ifX>=0
SING/X) y e x2 <
—X2

and

cosh(vVX2) ifX%?>0
(2.10) cosh(X) =<1 ifX2=0
cos(vV—X2) if X% <0.

2.5. Coordinate spheres at four points on a circle. Of course if the p; and p, along the coordinate curve are
already known, then the coordinate surfaces can be constructed directly by application of equation 2.5. This
happens in practice when we are given four cocircular points {p; ;) } and a starting frame at one of them. Figures

2.1, 2.2 and 2.9 were in fact generated this way. 7, of tangent frame {7;} at P(0,0)» hotated 1(20 0)’ is dual to a

tangent bivector K'<2070) which wedged with the point p(; ), creates a sphere cwhose own tangent vector 1(2170) at
P(1,0) We can extract by application of equation 2.2:

0 = (P10 (o) AP10))"
The entire tangent frame at p(; ) can be similarly derived,
7’-(1‘1,0) = (Pa0)] ((Tfo,o))* AP@10)"

as can subsequent points p(; 1y and p(g,1). If the points are numbered sequentially counterclockwise around the
circle we have

@2.11) 7= (p | ((Ti_ ) Apj)*

More directly we can manipulate the tangent bivectors K‘j» themselves,

2.12) ki = pil(Kj_1 Apj)-

We visualize their dual representation as tangent vectors in figure 2.5.
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FIGURE 2.6. Taking a sphere to a sphere by exponentiation of the linearly weighted log of a
simple rotor. Here we draw the circle cross section of the sphere during its transformation.

2.6. Rationalization of Coordinate Surfaces with Simple Rotors. With the system of principal contact ele-
ments in place, let us explore their rationalization, a method of discretizing the transformation of curvatures. In
the intuitive logic of geometric algebra, we must calculate ratios of elements before we can rationalize their trans-
formation. Thus we first calculate the ratio of spheres, for example to rationalize the surface in the u direction we
find the ratio across it:

(2.13) =2

which gives us a scalar and point pair bivector. We normalize this product by dividing out the reverse norm:
Fn = Xy /|| %s||, where the reverse norm is defined as

%&'"@s iff%s‘"@s‘>0
(2.14) 121 = 1

\/ (% -Ry) it Ry Ry <O0.

Our normalized rotor %, represents twice the transformation that takes 60 to ¢! thus we must calculate the
square root using Dorst and Valkenburg’s method (equation 5.2 in [11]):

(2.15) Ry =\ %), = L+ %

V214 (%)

A, is the linearizable transformation from 6“0 to ¢! and is the square root of normalized ratios — in short

ol

Ry = \/normalized( gm

). To actually linearize this rotor, we calculate its logarithm, which is the 2-blade point

pair exponent —1,/2 in the expression %, = e %/ and which we can weigh linearly and then re-exponentiate
using equation 2.8. The logarithm itself is detailed in equations 5.20 and 5.21 of Dorst and Valkenburg’s text, and
is replicated here for convenience:

(2.16) log(#) = atanh2({(#)2, (%))
where

7asin;(2\/s7) s if >0
(2.17) atanh2(s,c) = { s ifs2=0

atan2( 7s2,c)s if—1<s2<0.
) =
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FIGURE 2.7. Two directions of interpolation of a conformal rotor are possible. Additional
precautions are needed to determine the correct direction and to determine the full interval of a
given direction.

FIGURE 2.8. Given two intersecting spheres, there are two directions that one sphere can con-
formally transform into the other. Here we render circles undergoing transformation in both
directions.

We calculate 7, the same way, and now have the components necessary to plug into equation 2.1. Below we make
a simple modification to equation 2.17 to account for two choices of direction of motion around the orbit.

2.7. The Direction of Interpolation. Given two infersecting spheres, the conformal transformation between
them can occur clockwise or counterclockwise. As in any rotation, the direction in which the transformation
occurs determines the points that are evaluated along the way. Figures 2.7 and 2.8 illustrate this difference, and
present the need for additional measures be taken to ensure the correct orientation of rationalization.

The direction is determined by the log function. The default direction uses

tan2(v/—s2
(2.18) a2V 5,0,
—s

whereas an alternative uses a modified weighting in the opposite direction:
-(m-atan2(v/—s2,¢))

(2.19) — s

We find that using equation 2.19 is necessary for calculating 7, (resp., 7,) precisely when our initial corner
point p(g ) has a negative dot product with the opposing coordinate surface sphere o*! (resp., 6"). Calling our
alternative log,;, we have
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FIGURE 2.9. a) A patch is a C'-smooth blend between coordinate surfaces of constant co-
ordinate n, that is as a constant along the normal axis. Here oy (resp. oy\) represents the
principal contact sphere change in the normal along the vy (resp. v;) edges. b) and c) Two
views of principal contact spheres tangent to the surface frames.

1 RHyy) if -0t <0
(220) u,y — { Ogalt( u"‘) ! p(O’O) o <

log(Zu,v) otherwise.

2.8. Surface Blending. Thus far (with the exception of Figure 2.4) we have primarily visualized coordinate
surfaces in two directions: o' and o;;. Here we discuss the third coordinate surface direction — 6" — which can be
constructed with respect to both # and v as ¢ and o'. These surfaces are the osculating spheres tangent to the uv
surface. We use the notation 6™ on these surfaces to indicate that uv surface itself is lies on the constant (ny = 0)
in the direction normal to the surface. Given two spheres and a circle through both is sufficient to characterize
a orthogonal curvilinear coordinate system at each point on the circle from which a patch can be constructed
(Figure 2.9a).

Not any circle will suffice, however, and here we detail a simple construction for blending between two contact
spheres. Figure 2.10 illustrates the method, and Figure 2.11 depicts various results.

(1) Pick a point p on one of the spheres 0, .

(2) Find the plunge x through p orthogonal to both spheres: Kk = p A 6, A Gy,
(3) Find the first intersection point of k with the second sphere o,,,.

(4) Repeat for another point on o, .

These four points will be cocircular and it only remains to define {7} for each frame. 73 is given by the point
positions on the contact spheres. Defining some rotation about that axis for point p will determine the positions
of all four frames.

3. DISCUSSION AND FUTURE WORK

We have introduced a method of rationalizing cyclidic nets by composing conformal transformations from two
orthogonal coordinate surface pairs. Our technique emerges as a direct result of the orthogonal decomposition of
general conformal transformations uncovered by Dorst and Valkenburg in [11].

A good next step in our formulation will be to analyze a given simplicial surface and try to find its closed
conformal representation through piecewise integration of cyclidic patches. In the literature, generating a circle
packing on the triangularized surface is often the first step towards such a construction. Meshing of point cloud
data could also stand to benefit from our conformal immersions. Using CGA, Hildenbrand has explored sphere
fitting of point clouds in [19]and with Seibert and Becker in [24], a topic also tackled by Dorst in [8]. Another
interesting avenue will be to see whether our methods can extend to blending via the more general Darboux
cyclides.
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FIGURE 2.10. Construction of a circle net to blend between two spheres. Given a point p
on sphere 0,,, we calculate the orthogonal plunge x by wedging p with both spheres: k =
p A\ Oy, A\ 0y, . We then find the intersection of k with o,,,. We repeat for a second point on o, .
All four points thus defined will be cocircular. 7 is the tangent normal to the surface patch at p.
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FIGURE 2.11. Various patches blending the same two spheres.

Because of the structure-preserving nature of conformal transformations within the CGA mechanism, our com-
posed transformations are as capable of operating on tangents and normals as well as points, greatly simplifying
basic calculations in differential geometry. We suspect that approaching differential geometry by careful study of
integration of conformal mappings will help in developing the discrete geometric calculus within the conformal
model. In our treatment, our frames are already orthogonal — a condition which can be applied to non-orthogonal
frames using the reciprocal construction of geometric calculus. Hestenes’ writings are, as usual, a good place to
start this mapping [15, 17, 18] as is Sobczyk’s simplicial calculus [25].

Finally, we would like to more carefully consider the relationship between the rotors that transforms these spheres
across a surface patch and the shape tensor and shape bivector or curl, to better pin-point the pair generators
that most clearly and generally match Hestenes’ definition of the shape bivector as the “angular velocity of the
pseudoscalar as it slides along the manifold” [18]. Explicating such relationships will give more space for a
discrete calculus to form.
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ABSTRACT. Three Clifford algebras are sufficient to describe all interactions of modern physics:
The Clifford algebra of the usual space is enough to describe all aspects of electromagnetism,
including the quantum wave of the electron. The Clifford algebra of space-time is enough to
describe electro-weak interactions. To get the gauge group of the standard model, with electro-
weak and strong interactions, a third algebra is sufficient, with only two more dimensions of
space. This enlarged frame allows to include also gravitation.

1. WHY SPACE ALGEBRA ?

Why Clifford algebras are important in physics? Physics uses waves and the Fourier theorem
says that any periodic function may be decomposed in a sum of sin and cos functions. These
functions are more easily studied with the complex exponential function. Moreover the expo-
nential function is the main tool in Lie groups. The exponential function needs products, so
we must also know how to multiply numbers and vectors and products of vectors: we need an
algebra.

Why space algebra ? The first reason is simply that our physical space is 3-dimensional. The
second reason is the spin 1/2 which implies the use of SL(2,C) that is a subgroup of Cl; =
GL(2,C), true group of form invariance of the electromagnetism, wave of the electron included.
We have previously shown, first in [CCA7 in Toulouse, how this group of all invertible elements
in the space algebra Cl3 acts. Firstly time and space take naturally place in the auto-adjoint part
of this algebra: With

(1 N=ct; x=xlo+xP0m+x03 ; 8u:%

we let [11[2][3][4][51[61[71[11][12][13]

@ =47 = (ﬁfjjﬁ; );lo:’jj).

Space-time is made of the auto-adjoint part of the space algebra

3) g=x=2"—%; x'=x

4) det(x) =ax=x-x=(x")2 =22 = (xO)2 — (x!)2 = (?)*> = (x*)?

This allows to read the Dirac wave of the electron and its wave equation in the space algebra.
The link with the old complex formalism is simple if we use the left and right Weyl spinors n
and & by letting:

5) o=V2(n —ic*)=V2 (?7; _53*) ;0 =V2(E —ion*) =2 @ _n?)

Date: June 5, 2015.
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2 THREE CLIFFORD ALGEBRAS FOR FOUR KINDS OF INTERACTIONS

The conjugation /2 : ¢ — ¢A) is the main automorphism of Cl3. M being the transposed conjugate
of M and using

(©) o=9
the homogeneous non-linear wave equation of the electron, which has the Dirac equation as
linear approximation, reads:

(7 0(VP)0r + PgAd +mp =0; V = oty ; oy =0r01 =—io3; p=|det(9)].

where g = e/hc, m = moc/h, o’ =o0y, 0/ = —0j, j = 1,2,3. This equation is invariant under
any transformation R defined by an element M of the Lie group CI5:

(8) X' =R(x) = MxM"

) ¢'(x') = Mo(x)

(10) V=MV'M; gA=M¢A'M

(11) mp =m'p"; p'=|det(¢")|.

Only one M term is present in (9) when two M terms are present in (8) and (10): consequently
the wave turns with a 6 angle when the space turns with a 20 angle. The application

(12) f:M—R

is not an isomorphism, but only an homomorphism from CI3 into a group of geometric trans-
formations that I named Lorentz dilations. They are the product, in any order, of an element
of the restricted Lorentz group ZI by a homothety with ratio r = |det(M)|. The kernel of f is
the chiral group generated by i = 010,03 which orients the space. Consequently the chirality
is essential in quantum mechanics, it is present in the transformation of the wave (9), and this
chirality disappears in the geometry of space-time since it is absent in (8). Next, space-time
vectors are said contravariant if they satisfy (8) and covariant if they satisfy (10). In these
equalities V and gA are similarly transformed and this allows the gauge invariance under the
electric gauge transformation:

. 1

The existence here of the 3 index is the reason of the existence of three generations of fun-
damental fermions. The invariance of the mp product instead of the invariance of m and p
separately is the reason of the existence of the Planck constant [7][11][12]. The space algebra
Cls is 8-dimensional on R, therefore the wave equation (7) is equivalent to a system of 8 nu-
meric equations with partial derivatives. With the basis (1, 01,02, 03,i071,i02,i03,i) of Cl3 the
equation corresponding respectively to 1 and io3 are [9]

(14) Z=0
(15) I =0; J=J o, = ¢¢!

where J is the current of density of probability and .# is the Lagrangian density. Then the
law of conservation of the J current is a part of the wave equation and similarly (14) is a part
of the wave equation. The wave equation comes from a Lagrangian mechanism and (this is
new) the wave equation contains . = 0. This explains why there is a principle of extremum in
quantum mechanics. We have previously explained how classical electromagnetism, without
or with magnetic monopoles, reads in space algebra (chapter 4 of [11] and [12]).

2. THE ELECTRO-WEAK GAUGE IN SPACE-TIME ALGEBRA
Two non equivalent homomorphisms exist from CI3 into the group of dilations on the space-

time. This is the origin of the existence of left and right waves, that are fundamental for weak
interactions. We have obtained [9] in the C/ 3 algebra a wave equation with mass term for
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THREE CLIFFORD ALGEBRAS FOR FOUR KINDS OF INTERACTIONS 3

the pair electron+neutrino, both form invariant (then relativistic invariant) and gauge invari-
ant under the U(1) x SU(2) gauge group of electro-weak interactions. The wave ¥; of the
electron+neutrino is a function of space and time with value in the space-time algebra. It reads:

. A¢e A(P’l — Sb\e (B”
(16) lP_((I)aG] (pr])_((Pn (be)

where indexes e, n, p and a indicate the respective waves of the electron, the electronic neutrino,
the positron and the electronic anti-neutrino. They satisfy:

(17) 0. = \/5 (ée _iGZn:) ) @ = \/5 (ne _i62§e*)
(18) On=V2(E —ioam}) s du=V2(Nn —ic2&Y)
(19) Op = 901 ; u = P01

The Weinberg-Salam model [14] has no use for the right wave &, of the neutrino and cancels
this term. This gives

(20) o =V2(0 —ioamy) s u=V2(na 0)

@D O =V2(np —ic:8}) b =V2(& —ioamy)

(22) 0a=V2(0 —i&}) 1 pa=V2(& 0)
Sip=M2es Sop=—M1es Mp=—; Mp=2J,

(23) E1a = Mons S2a = —Miy-

The charge conjugation is the same as in the standard model of quantum physics. Instead of the
36 =8 x 9/2 tensorial densities built from the wave of the electron we get now 78 = 12 x 13/2
tensorial densities built from the 12 = 8 + 4 parameters of the wave of electron+neutrino. We
let

(24) ay = det(9) = pe’? = 2(&1eni, + &)
(25) az = Z(nikenékn - nékenikn)

(26) asz = 2(§1€Tﬁn + ézen;n>

27 p = \/aia] +axa; +asa;.

The invariant wave equation of electron+neutrino reads

(28) P, (D)) Yo12 +mp¥yx; =0

where ‘i’l is the reverse of ¥; and where ); reads:

29) . Lz (aT P+ 50201 +a30n  —a3PeLO1 +a30eR_ )
pPi a20e101 +a3Qer  A19e — 20,01 +a3Py,

with @.g = ¢.(1 + 03)/2, right part of @, ¢or. = ¢.(1 — 03)/2 left part of ¢,. The covariant
derivative D uses four operators P, which form a basis of the Lie algebra of U(1) x SU(2) and
reads:

(30) PL(¥)) = %(‘Pz +i¥ 1) 5 1= Y123

€1y Po(W1) =¥y + %‘PziﬂL %i‘l’mo =Y 1 +P- ()i
(32) P(Y) = %(i‘l’n/o +¥11012) = P+ (Y1) 15l

(33) p(Y) = %(‘Pl% —i¥m23) =P (P)1

G4 PA(W) = 3 (~ Wi +i%10) = P (%)) ().
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4 THREE CLIFFORD ALGEBRAS FOR FOUR KINDS OF INTERACTIONS

The covariant derivative uses also:
.Y : i

with T} = % for a doublet of left-handed particles and T; = O for a singlet of right-handed
particle. Y is the weak hypercharge, Y7 = —1, Yg = —2 for the electron. To transpose into
space-time algebra, we let

0 D 0 b
== ” N g = ~ N = =
(36)  D=0"Dy: D=y"Dy = (D O), V=% (,2 O)
0 B ; 0 —o;
— ” i — — o~ N J = —V: = J 1 =
: : : : 0o w/
(38) W/ =oc"Wy;, W J/”W” (W/ 0)
We have proved [7][11][12] that the covariant derivative (35) of the Weinberg-Salam model is
equivalent to
(39) D=9+ BR+ (WP + WP+ WP ; 9= 149,

The wave equation (28) is invariant under the R transformation generated by any M element
of CI3, this implies the relativistic invariance of the wave. It is also gauge invariant under the
gauge transformation:

(40) W) = [exp(atP)] (W)
where Dy,'¥| is replaced by D) ¥
41) D] = exp(atPy)Dy ¥,

2
(42) B, =B, — —d,d°
1 T g

- 2
43) WP = [exp(s)Wde -0 [exp(s)]] exp(—S); S=a'P +d®P,+d3Ps.
2

Contrarily to the Weinberg-Salam model, which was unable to manage an electron with a proper
mass linking the right and left waves of the electron, our wave equation has a mass term and is
fully gauge invariant. Therefore the complicated mechanism of spontaneous broken symmetry
needed to rebuild a mass term is useless. The Higgs boson exists, but it shall not give a way to
compute the proper mass of particles.

The proper mass in (28) is the proper mass of the electron alone, then the wave equation of
electron+neutrino is reduced to the invariant wave equation (7) when the wave of the electronic
neutrino is canceled. If the wave of the electron is canceled the mass term is canceled and we
get for the neutrino the Dirac equation without mass:

(44) Vo, =0

The real part of the wave equation is also .2 = 0: the Lagrangian formalism is a consequence
of the wave equation. There is also a conservative current, that is now

(45) J = 0ed) +udy ; It =0.
3. THE GAUGE GROUP OF THE STANDARD MODEL IN Clly5

To get a wave function including electron+neutrino plus two quarks u and d with three states
of color each the space-time algebra is not enough: even if quarks have only left waves these 9
spinor wave (two spinors for the electron) necessitates 36 parameters and 36 < 2" if n is equal
or greater than 6. We have proved [10][12] that Cl; 5 is enough to get the complete wave as
a function of space-time in the Clifford algebra of this extended space-time. Three states of

124



THREE CLIFFORD ALGEBRAS FOR FOUR KINDS OF INTERACTIONS 5

“color” are named 1, g, b (red, green, blue). So we build a wave with all fermions of the first
generation as

(¥ Y,
(5 %)
where ¥, is defined by (16) and ¥,, ¥y, ¥}, are defined on the same model:

(47) ‘Pr — (Aq)d" A¢W” ) _ (?\dr ?\ur)

Par01 97,01 Our  Dar
"= (g )= (8 1)
v (s aen) = (80 30)
These definitions use the matrix representation:
(50) Ly= (;l V(‘;),uzo,l,zﬁ; L= (g ‘0’4)  Ls= (? (‘,)

The wave contains not only all particles of the first generation, but also all anti-particles of these
objects. We let

(51) Wi=1*W], j=1,2,3; D=1"Dy; L°=Lo; L = —L;
for j =1,2,3. The covariant derivative of electro-weak interaction reads now
(52) D(¥) = 3(®)+ 5B Po(¥) + £w/p,(¥).

We use two projectors P satisfying

(53) PL(W) = S(¥i¥Ln) ;i = Lo

Three operators act on the quark sector as on the lepton sector :

(54) Py (W) =P (¥)Lss

(55) Py (¥) =P, (¥)Lso12

(56) P3(¥) =P, (¥)Loi3.

The fourth operator acts differently on the lepton wave and on the sector:

Py(W Po(P,
57) Py(¥) = (P,((’)((q,’g> P,ggq,b;)

. .. .
(58) Po(W)) =11 +P-(W)i=¥p1 + 5(‘1’11 +i¥;130)
1 . 1 1 ..
(59) P/O<lpr) = _g‘Pﬂ/Z] +P- (lPr)l = _g‘Pﬂ/Z] + E(Trl_Fl‘Pr%O)

The value —1/3 gives the four correct values of the charges of quarks and antiquarks (see [12]
6.1). To get the gauge group of chromodynamics we need the projectors

1 Iy 0
P+:5(18+L012345): <S 0)

_ 1 00
(60) P = 5(18 —Loio345) = (O 14) :
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6 THREE CLIFFORD ALGEBRAS FOR FOUR KINDS OF INTERACTIONS

The operators corresponding to the eight generators of SU(3) read (¥, is abbreviated as c,
c=rg,Db):

1 0
(61) [(P) = E(L4‘PL4 + Lo123s WLo1235) = (r g)
1 0 —ig
(62) H(¥Y) = E(LS‘PLAL —Lomsa¥lowss) = ;.
(63) I3(¥) = PtWP — P PP = (_Og 6)
_ 0 b _ 0 —ib
(64) Ly (¥) = Loinss PP~ = (0 r) ; Is(W) = Loioa PP~ = (0 i )
_ 00 R 0O O
(65) [6(¥) = P~ WYLoioss = (b g) ; [7(W) = —iP WLy = (—ib ig)
(66) T(W) = —— (P~ PLo1nss + Lotsas WP~ ) = — <0 ’ )
8 7 012345 + Lo12345 Ale —2)
We can extend the covariant derivative of electro-weak interactions (39):
(67) D(¥) = 9(¥) + % B Po(¥) + TWP,(¥) + T GHru().

where g3 is another constant and G¥ = L* GZ are eight terms called “gluons”. Since 14 commute
with any element of CI; 3 and since P;(i%;nq) = iP;(Wina) for j =0,1,2,3 and ind = 1,1,8,b
each operator il'; commutes with all operators P - Using 12 real numbers a, a/, j=1,2,3,
bk k=1,2,....8, we let

=3 k=8
(68) Si=Y a/P;; S, =Y bhiry
j=1 k=1

and we get, using exponentiation (see [12] 6.2)
(69) exp(aofo +81+95) = exp(aoﬂo) exp(S1) exp(S2)

The set of these operators is a U(1) x SU(2) x SU(3) Lie group. Only difference with the
standard model the structure of this group is not postulated but calculated. The invariance
under CI3 (and particularly the relativistic invariance) of this covariant derivative comes from
(9). The gauge invariance reads

(70) W' = [exp(a’Py+S1+52)|(W) ; D=1'D,, ; D' =I*'D;,
(71) D, ¥ = exp(a’Py+ S, +52)D, ¥
2
(72) B, =By — —0dud’
81
: 2
(73) WP = [exp(SWiP; - o [exp(S1)]| exp(~$1)
. . 2
(74) Gily = [exp(Sz) Ghil — o [exp(Sz)]} exp(—S»).

The SU (3) group of chromodynamics, generated by the I'; operators projecting the wave on
the quark sector acts only on this sector of the wave:

(75) P [exp(BNily ) (W)PH = PTwPT = (q(;l 8)

We get then a U(1) x SU(2) x SU(3) gauge group for a wave including all fermions of the
first generation. This group acts on the lepton sector only by its U(1) x SU(2) part. The
physical translation is: leptons do not strongly interact, they have only electromagnetic and
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THREE CLIFFORD ALGEBRAS FOR FOUR KINDS OF INTERACTIONS 7

weak interactions. This is fully satisfied in experiments. The novelty here is that this comes
from the structure itself of the quantum wave. Since it is independent on the energy scale, we
understand why great unified theories do not work.

The wave equation for the complete wave reads:
(76) 0= (D¥)Loia + M.

The mass term

77 M — (M2P2Xp M2P27g
- mypP2Xr mipP1xi

contains a; defined in (24) to (26) and s; in [12](B.168) to (B.182) and

j=15

2 * * * 2 *

(78) pi = aia] +axas +azaz ; py = Z 88
j=1

Since the only U (1) x SU(2) part of the gauge group acts on electron+neutrino the wave equa-
tion acts separately in a lepton part and a quark part:

0 0 ¥, 0
(79) 0= (D¥")Lo12 +mip; <O Xl) = ( Ol 0)
c c c ¢ 0 lPr
(80) 0= (DY)Loi2 +mapax®; X = (;Z’ )(C)g) W= (‘Pg ‘Pb) '

The ., c = r,g,b are defined in [12](B.184) to (B.186). The wave equation (79) is equivalent
to

(81) DY 112 +mipixi=0; Yi2=nr

which is the equation (28) with m; = m, p; = p. This wave equation is equivalent to the
invariant form:

~ ~ ~ o T
(82) ¥ (DY) Y12 +mip1 ¥ =0; ¥ = (96 (p’%) :
¢n 9
The double link between the Lagrangian density and the wave equation exists also for the
complete wave equation (76): the real part of the invariant equation is the sum of the lepton
term and the corresponding term for the quark part of the wave equation. This one is equivalent
to the invariant form:

(83) 0 = W(D¥°) Lotz +map2¥x°
G ¥, P, Xb X
84 Y= < s xS = §
& G 0)ir=( %
Like in the lepton case, the real part of the wave equation is simply the equality (see [12] 7.6)
(85) Z =0.

This link between the wave equation and the Lagrangian density is very strong on the mathe-
matical point of view, since it comes from an algebraic calculation, similar to take the real part
of a complex number. The way going from the Lagrangian density, by the variational calculus
and an integration by parts, is very dubious on the physical point of view for propagating waves.
This method is nevertheless always available on the mathematical point of view. Similarly to
(45) only one of the numeric equations equivalent to (83) is simple, the law of conservation of
the total current:

(86) a/,tJtlJ 5 Jt - ¢dr¢;r + (Pur(pbjr + ¢dg¢;g + ¢ug¢tjg + ¢db¢;b + ¢ub¢ljb'
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The wave equation (76) is form invariant under the group CI/5 defined by (8) and (9). The ¥
wave satisfies:

N O M 0
87) ¥'(Y)=N¥(x); N= (O N) ;N = (O M) L mypy =mipr; myPy = map;.

The wave equation (76) is gauge invariant under the U (1) x SU(2) x SU(3) group of transfor-
mations defined by (70) to (74) (see [10] and [12] B.4 and B.5). The lepton part and the quark
part of the complete wave may be separated, because the lepton part is insensitive to the SU (3)
part of the gauge group. If the quark part is canceled the wave is reduced to the lepton wave
(28).

4. GRAVITATION

Quantum physics has been unable to account for gravitation until now because gravitation ne-
cessitates a relativistic formulation. And the relativistic part of quantum physics used in the
standard model has suppressed the mass term of the electron to get the electro-weak gauge in-
variance. Now we have a relativistic wave equation with mass term able to get the electro-weak
and strong interactions with gauge transformation. Mass terms present in our wave equations
are able to account for both aspects of the mass : inertial mass and gravitational mass.

4.1. Inertia. In the precedent section the form invariance was obtained for the R transforma-
tions defined from M terms that were the same for the whole space-time. Such constant M
terms produce dilations which link an inertial frame to another one. Wave equations of quan-
tum mechanics are implicitly written in such inertial frames. An inertial frame is a frame which
has no move of rotation and none acceleration if we compare with very far stars. For instance
we consider a frame at the surface of a sphere, with a fixed third axis that is parallel to the axis
o3 of the rotation which is also an axis of the sphere. At the point P the 7i vector is normal to
the sphere. The first axis is supposed orthogonal to the axis of rotation and in the plane (03, 7).
We suppose that (07, 0,, 03) is an orthonormal direct basis. The move of the frame at P is made
of a move of translation in the direction ¢, and a move of rotation with axis 3. We name R
the distance of P to the axis of rotation and ® the angular velocity. The velocity of the move of
translation is v = @R. We let

(88) My = %9 . My = e@i03/2¢ . pr— voMy s X = MM
1 R
89 § = ~atanh(—
(59) Jatanh( %)
And we get
(90) K= cosh(28)x” + sinh(28)x? ; =x
1) 2= x4 Llsinh(28)2° + cosh(26)x2]dx”
C
92) ¥% = [sinh(28)x° + cosh(28):2] — Lx'dx®.
C
This gives
d2 /1
93) Y — @esinh(28) ~ w?R.

dt?

which is the centrifugal acceleration.
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Any variable M = M(x) satisfying, in the vicinity of a space-time point x reads

M:M1M2; M1:M( )
dxM

94) My =M;"' —1—1—7(u+fu61—|—lu62—|—au63+hui61+gui62—|—bui63—|—iqu)

dx* : . : :

where ay, by,... g, are 32 numeric functions of x and dx" are the infinitesimal increments of
x* coordinates. This gives, for x' = szM;:

(96) ="+ (puxo + fux] + lux2 + a”x3)dx”
97 Zx] +(fux0+pux] —I—b”xz—guxS)dx”
(98) = %+ (Iyx® — byx' + ppx® + by )dx?
(99) x'3 =+ (apx® + gux' — hyx® + ppx®)dx?

Christoffel’s symbols ng being usually defined as

(100) = x® T xP dx”

this gives

(101) I, =Tl =13, =T3, =pyu

(102) Dou =Tl =fus Tou=T2u=lus Tou =I5, =au
(103) 0, =-T3, =hy: [0, =Ty, =gu: I3, =-T7,=by

Only 28 amongst the 32 numeric functions are present in the Christoffel’s symbols: the four g,
present in (94) are not in the geometry, because the kernel of the group homomorphism M — R
is the U(1) group generated by i [3][7]. Einstein had very early the intuition that something
was lacking in quantum physics. Effectively the g, are lacking, not for the spinors of quantum
physics, but for vectors and tensors: the g, are present in the M, term multiplying the spinors
of the wave, and are lacking in the transformation of contravariant vectors (100). They are also
lacking in the transformation of covariant vectors: we have

(104) V =649y = Mo"Ma),

with the same o*. This gives

(105) V' =6"9,=M '¢"M "9, = 6" (3 —dx"T%, )
Therefore we get for covariant vectors the usual
(106) 0y = dy —dx"T%,,0p.
This gives
(107) GV = (Mg) M ' o* M9, (M9)
=G MM oM [(9uM)§ +M(u)
= 90 M ™ (duM)$ + 95" 09
= §o* [~ (uM ™ )M]$ + 9V
(108) =9V — (VM YHYM]¢.
(109) ¢'V'¢' =D
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10 THREE CLIFFORD ALGEBRAS FOR FOUR KINDS OF INTERACTIONS
where we have let
(110) D=V— (VM YHYm

1 . . . .
(111) = oH[dy+ E(p“ — fuo1 —1y02 —a, 03 + hyic) + gics +byioy —iqy)]

This introduces 8 space-time vectors that we name “potentials of inertia”:

(112) p=o0o*py=0"Tq,: f=0!fy=0"Ty,: |=0c"l,=0"Ty,
(113) a=otay =0c"Tj, ; h=c"h, =c"I3,; g=o"gy=0"T),
(114) b=octby, =0"Ty, : q=0"qy

(115) D=V+ %(p — fo1—1oy —ao3 + hioy + gior + bios — iq).
These eight potentials become under a dilation R induced by a constant M

(116) D=MD'M; V=MV'M; p:Mp'ZVI; qzﬁq'ﬁl.

In space-time algebra we shall need

D=V— (VM "YM

S 1 AN i -~ ) /\. AN, /\. N
(117) :V+5(p+fcl+lcz+a63+hzm+gzcz+bzcg+zq)
0 D 0 D
(118) D_<5 O)’ Q_(D 0).
And the covariant derivative unifying inertia to gauge interactions becomes
(119) D=D+%B P+ Swip,+ £ 6y

Contrarily to all other terms that contains projectors, the term of inertia acts on the whole wave.
This universality is a characteristic of inertia.

4.2. Wave normalization. The invariance of the Lagrangian under all translations, as with the
linear Dirac theory, induces the existence of a conservative impulse-energy tensor, the Tetrode’s
tensor :

.4 0L

(120) Ty = P=rn— + hy—58' L.
Y § () I(duy) § Y
Since the wave equation is homogeneous, the Lagrangian is null and we get:
i, _ _
(121) T =S (=W oy +our'y).
For a stationary state of an electron with energy E we have:
: : E E
(122) y=ey(): T=e PG dy =iy AV =—iV.
So we get:
i E E JO

12 10 = — (=9 i)y —i—y =E—.

(123) 0 =5 (V)Y — i YY) =Eo

The condition normalizing the wave function of the electron must then be replaced by

(124) // ;—Za’v:l

that is equivalent, for a bound state, to

(125) // Todv =E.
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This means that the quantum precept of the normalization of the wave is not arbitrary but is
a consequence of the principle of equivalence between inertial and gravitational mass-energy,
basis of the General Relativity.

4.3. Gravitation. The global energy E of the electron is the temporal component of a space-
time vector, the energy-momentum vector. Since the integration has been made in a frame
where this momentum is null, this vector reads (E,0, 0,0, ) but it will be seen by other observers
moving as (po, p1,p2,p3). General relativity considers all particles of the universe as giving
each such an energy-momentum space-time vector, and if there is no pressure the density of this
fluid of particles (dy,d,,d>,d3) constitutes the material contribution to the symmetric tensor of
energy Tﬁ’ = dyud”. Einstein has linked this material tensor to the curvature of the space-time
manifold:

1 1
(126) }[ ﬁ—iéﬁ(R—zA)]:Tﬁ

where A is the cosmological constant and y is the constant of gravitation. We have placed this
constant on the left side, then (126) is invariant under CI3. The density of mass per unit volume
Uo used in the Newtonian law of gravitation

G
(127) AU = —4nGy ; x =8m—;
c
gives, in the case of matter without pressure:
dxM
(128) T = poctuyuP ; ub = % ; ds? = guydxtdx".

The standard model of quantum physics is therefore compatible with general relativity.

5. CONCLUDING REMARKS

The use of these three Clifford algebras presents many advantages:

We reunite the frame of classical physics, which was the space-time and vectors or tensors
built on space-time, with the frame of quantum mechanics, since all interactions are described
with real Clifford algebras.

Quantum waves used here are not so different from other waves of classical physics. They are
well-defined functions of space and time with value in algebras that are also linear spaces on
the real field.

Since the geometric algebra of the physical space is isomorphic to the complex linear space
of 2 x 2 matrices (Pauli algebra) linear spaces of complex functions have invaded quantum
physics. Nevertheless this isomorphism is not an isomorphism of complex algebraic structures,
but an isomorphism of algebras on the real field. Then complex structures are not fundamental,
the true frame of quantum physics is the geometric algebra. Hermiticity and unitarity are not
fundamental: the true conjugation is the reversion, in each algebra (see (7), (28), (83)). Reverse
and adjoint are identical in C/3 and only there.

Waves, for fermions and antifermions but also for systems of particles [4] are well defined
functions of space and time with value in a real Clifford algebra: now we are not disturbed by
the difference between space coordinates and time coordinate coming from the non-relativistic
quantum wave of systems.

We integrate in a classical frame all novelties coming from quantum mechanics:

The fermionic wave is made of spinors, objects that are part of the geometric algebra, with the
peculiarity that they turn on a half angle in a spacial rotation.
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The charge conjugation is a pure quantum transformation that changes only the differential part
of the quantum wave (see [12] 3.4).

The group of form invariance accounts for the spin 1/2 and it is then necessarily greater than the
Lorentz group. The fundamental group of invariance of all physical interaction is CI3, group of
all invertible elements in the geometric algebra. Physics, computer science and engineering are
reunited !

Because there are two inequivalent homomorphisms of CI3 in the group of Lorentz dilation
there are left and right waves. They turn differently in a Lorentz dilation: the physical space is
oriented, and this is experimentally well known in weak interactions.

The invariance group is compatible with an oriented space and with an oriented time.

The integration of two quarks in each generation, with three color states each, is made by
adding two and only two dimensions to the usual space. This is compatible with the group
of invariance CI; in a way that separates automatically the three usual dimensions from the
two supplementary dimensions (see[12] 7.4.1). This enlarged geometric frame allows a wave
equation for all particles and antiparticles of each generation. The wave equation is gauge
invariant under a gauge group that is exactly the U(1) x SU(2) x SU(3) group of the standard
model of quantum physics. This group is not postulated but is a consequence of the geometric
structure of the enlarged space-time. The mass term of the wave equation is compatible with
the form invariance under CI; that generalizes the relativistic invariance, and it is compatible
with the gauge invariance: no need of symmetry breaking.

We justify:

Three and only three generations and a fourth neutrino [8].

The existence of the Planck constant (see [12] 3.3).

The normalization of the wave and the existence of a density of probability.

The insensitivity of leptons to strong interactions.

The strict conservation of the baryonic number, linked to this insensitivity.

The existence of a Lagrangian formalism.

We comfort the standard model by diminishing the too numerous free parameters:
Only two proper masses in each generation.

One number gives the four values of charges of quarks and antiquarks.

The value of the electric charge is determined by the existence of magnetic monopoles (see [12]
8.3.2).

We integrate gravitation:

Inertial frames are also frames where a double link exists between the wave equation and the
Lagrangian density.

Non-inertial frames are frames coming from the use of variable terms in CI3.

The normalization of the wave and the existence of a density of probability are consequences
of the principle of equivalence between inertial and gravitational mass-energy.

After integration on all physical space, the impulse-energy tensor of the quantum wave becomes
the symmetric tensor of General Relativity.
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ABSTRACT. At the last AGACSE in 2012, I presented a new link between the geometries of
three and four dimensions; in particular, I have shown that any symmetry group in three dimen-
sions induces a corresponding symmetry group in four dimensions, via a new Clifford spinor
construction. This connection had been overlooked for centuries (usually one assumes the larger
groups are more fundamental) but the new construction derives all the exceptional phenomena
in 4D — D4, F4 and Hy — via induction from the 3D symmetry groups of the Platonic solids A3,
B3 and H3. This spinor construction also explains the unusual 4D automorphism groups. The
4D groups in fact do not contain anything that is not already present in the 3D groups they are
induced from.

David Hestenes invited me to stay with him in Phoenix for half a year, and in La Rochelle
set me the challenge of deriving the exceptional group Ejg, the holy grail of mathematics and
physics, in Geometric Algebra too — he even gave me the Eg T-shirt that he himself got from
Garrett Lisi.

I am pleased to report that I have now solved his challenge. I have found a construction that
constructs the Eg root system in analogy to the above construction going from 3D to 4D. The
previous construction worked along the following lines: each 3D root system — which generates
the corresponding reflection symmetry group via the reflections in the hyperplanes orthogonal to
the root vectors — allows one to form a group of spinors by multiplying together even numbers of
the reflection generating root vectors in the Clifford algebra; these spinors have four components
(the usual 1 scalar and 3 bivector components) and one can endow these with a 4D Euclidean
metric. One can then show that the resulting set of spinors reinterpreted as 4D vectors satisfies
the axioms for a 4D root system, thereby generating a symmetry group in 4D.

For instance, starting with the root system H3 which generates the symmetries of the icosahe-
dron, one generates a group 2/ of 120 spinors via multiplication in the Clifford algebra. These
are precisely the 120 root vectors of the 4D root system Hy once reinterpreted using the 4D Eu-
clidean metric. Hy is exceptional and the largest non-crystallographic Coxeter group; it also has
the exceptional automorphism group 2/ x 2I. However, this is trivial to see in terms of the spinor
group 21, as it must be trivially closed under left and right multiplication via group closure.

Taking the full set of pinors (i.e. not restricting to even products of root vectors) of the icosa-
hedron, one generates a group of 240 pinors with 8 components, as befits a group of multivectors
in 3D. I have now been able to show that these 240 pinors are precisely the 240 roots of Eg via
a new inner product, thereby generating the exceptional group Eg.

It is extraordinary that the exceptional geometry Eg has been hiding in the shadows of icosa-
hedral geometry for millennia, without anyone noticing. As with the 4D induction construction,
this discovery was only possible in Clifford algebra — there is much prejudice against the use-
fulness of Clifford algebras (since they have matrix representations) and usually matrix methods
are equivalent if less insightful — but the 4D and 8D induction constructions are to my knowledge
the only results that require Clifford algebra and were completely invisible to standard matrix
methods.

I will also talk about a GA treatment of the Eg geometry more generally, in particular the
geometry of the Coxeter plane and partial Dynkin diagram foldings. I will also review the
McKay correspondence and trinities; icosahedral symmetry and Eg are indirectly related through
these, but the direct connection via Clifford methods had again so far been overlooked.

1. INTRODUCTION

Lie groups are a central subject of 20th century mathematics as well as physics. In particular,
the largest exceptional Lie group Ej is central to String Theory and Grand Unified Theories and
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is thus arguably the single most important symmetry group in modern theoretical physics. Lie
groups are continuous groups but they are closely related to their corresponding Lie algebras
whose interesting part in turn is described by a root system: a collection of reflection generat-
ing vectors called roots, which generate a reflection symmetry group (called a crystallographic
Coxeter group or Weyl group). It is easy to move between those four related concepts and we
will usually not make a distinction — with the exception of non-crystallographic root systems
such as H3 (which generates icosahedral symmetry) and its 4D analogue Hy, since their non-
crystallographic nature means that there is no associated Lie algebra. The Eg root system is
thus commonly thought of as an exceptional (i.e. there are no corresponding symmetry groups
in arbitrary dimensions) phenomenon of eight dimensional geometry, very far removed from
our usual experience with 3D geometry. It is the purpose of this article to show that the eight
dimensions of 3D Clifford algebra actually allow Eg to be unveiled as a 3D geometric phe-
nomenon in disguise; likewise all 4D exceptional root systems arise within 3D geometry. This
opens up a revolutionary way of viewing exceptional higher-dimensional phenomena in terms
of 3D spinorial geometry. The non-exceptional Lie groups have been realised in Geometric
Algebra by David Hestenes et al [10] as spin groups, and Lie algebras as bivector algebras;
here we offer a Clifford geometric construction of all the exceptional phenomena via their root
systems — of course, H4 does not even have an associated Lie algebra and Lie group.

This paper is structured in the following way. After some preliminary definitions and back-
ground in Section 2, we show in general that any 3D symmetry group induces a 4D symmetry
group, via their root systems (Section 3). In particular, the Platonic root systems (A3, B3, H3) in-
duce all the exceptional 4D root systems (Dy, Fy, Hy) in terms of 3D spinors which also explains
their unusual symmetry groups. We concretely explain the case of icosahedral symmetry H3 in-
ducing the exceptional largest non-crystallographic Coxeter group Hy from a spinor group (the
binary icosahedral group 27) that describes the 60 icosahedral rotations in terms of 120 spinors
doubly covering the rotations. The above collection of Platonic root systems (A3, B3, H3) in
fact forms a trinity that is related to the trinity of exceptional Lie groups (Eg,E7,E3) via var-
ious intermediate trinities and also via my new spinor construction in combination with the
McKay correspondence. This is the first hint that the icosahedron may be indirectly related
with Eg. Section 4 makes a completely new, direct connection between them by concretely
constructing the 240 roots of the Eg root system from the 240 pinors that doubly cover the 120
icosahedral reflections and rotations in the Clifford algebra of 3D. Thus all the exceptional root
systems can in fact be seen as induced from the polyhedral symmetries and the Clifford algebra
of 3D, which offers a completely new way of better understanding these in terms of spinorial
geometry with potential for a wide range of profound consequences. Section 5 discusses Hy
as a rotational subgroup of Eg, and thus affords a second way of viewing Hs more naturally
as a group of rotations rather than reflections (as is the standard view in the Coxeter picture).
This construction of Hy from Eg is in fact a partial folding of the Eg diagram, whilst a com-
plete folding leads to the Coxeter plane. We therefore finish by discussing the geometry of the
Coxeter plane of various root systems, notably Eg, and point out which advantages a Clifford
algebraic view has to offer over the naive standard view which involves complexifying the real
geometry: in Clifford algebra the complex eigenvalues in fact arise naturally as rotations in
mutually orthogonal eigenplanes of the Coxeter element (Section 6) with the bivectors of the
planes providing the relevant complex structures; we conclude in Section 7.

2. BACKGROUND

In this section, we introduce Coxeter (reflection) groups and their generating root systems:

Definition 2.1 (Root system). A root system is a collection ® of non-zero (root) vectors o
spanning an n-dimensional Euclidean vector space V endowed with a positive definite bilinear
Jform, which satisfies the two axioms:
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(1) ® only contains a root o@ and its negative, but no other scalar multiples: ® NRo =
{—a,a} Vacd.

(2) @ is invariant under all reflections corresponding to root vectors in ®: s =P Vo €
®. The reflection s in the hyperplane with normal o is given by

(A]a)
A= sg(A)=A-2 o,
S 1
where (-|-) denotes the inner product on'V.
For a crystallographic root system, a subset A of ®, called simple roots o, ..., 0y, 1s sufficient

to express every element of @ via Z-linear combinations with coefficients of the same sign.
® is therefore completely characterised by this basis of simple roots. In the case of the non-
crystallographic root systems H,, Hz and Hy, the same holds for the extended integer ring
Z[t] = {a+ tbla,b € Z}, where 7 is the golden ratio T = 3(1 ++/5) = 2cos %, and o is its
Galois conjugate 6 = %(1 —/5 ) (the two solutions to the quadratic equation x> = x+1). For the
crystallographic root systems, the classification in terms of Dynkin diagrams essentially follows
the one familiar from Lie groups and Lie algebras, as their Weyl groups are the crystallographic
Coxeter groups. A mild generalisation to so-called Coxeter-Dynkin diagrams is necessary for
the non-crystallographic root systems:

Definition 2.2 (Coxeter-Dynkin diagram and Cartan matrix). A graphical representation of
the geometric content of a root system is given by Coxeter-Dynkin diagrams, where nodes
correspond to simple roots, orthogonal roots are not connected, roots at % have a simple link,
and other angles % have a link with a label m. The Cartan matrix of a set of simple roots o; € A
is defined as the matrix A;; = 2(04|aj) /(| ct;)).

For instance, the root system of the icosahedral group H3 has one link labelled by 5 (via the
above relation T = 2cos %), as does its four-dimensional analogue Hy.

The reflections in the second axiom of the root system generate a reflection group. A Coxeter
group is a mathematical abstraction of the concept of a reflection group via involutive generators
(i.e. they square to the identity, which captures the idea of a reflection), subject to mixed
relations that represent m-fold rotations (since two successive reflections generate a rotation in
the plane defined by the two roots).

Definition 2.3 (Coxeter group). A Coxeter group is a group generated by a set of involutive
generators s;,s; € S subject to relations of the form (s;s;)"i = 1 with m;j = mj; > 2 for i # j.

The finite Coxeter groups have a geometric representation where the involutions are realised
as reflections at hyperplanes through the origin in a Euclidean vector space V, i.e. they are
essentially just the classical reflection groups. In particular, then the abstract generator s; corre-
sponds to the simple reflection s; : A — s;(1) = 4 — 2% o; in the hyperplane perpendicular
to the simple root ¢;. The action of the Coxeter group is to permute these root vectors, and its
structure is thus encoded in the collection ® € V of all such roots, which in turn form a root

system.

We employ a Clifford algebra framework, which via the geometric product affords a uniquely
simple prescription for performing reflections —aA o (assuming unit normalisation) and thus
any orthogonal transformation as products of reflections via the Cartan-Diedonné theorem, in
spaces of any dimension and signature. For any root system, the quadratic form mentioned
in the definition can always be used to enlarge the n-dimensional vector space V to the cor-
responding 2"-dimensional Clifford algebra. The Clifford algebra is therefore a very natural
object to consider in this context, as its unified structure simplifies many problems both con-
ceptually and computationally, rather than applying the linear structure of the space and the
inner product separately. In particular, it provides (s)pinor double covers of the (special) or-
thogonal transformations, as well as geometric quantities that serve as unit imaginaries.
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3. THE GENERAL SPINOR INDUCTION CONSTRUCTION: H4 AS A GROUP OF ROTATIONS
RATHER THAN REFLECTIONS (INDUCED FROM H3), TRINITIES AND MCKAY
CORRESPONDENCE

In this section we prove that any 3D root system yields a 4D root system via the spinor group
obtained by multiplying root vectors in the Clifford algebra [7].

Proposition 3.1 (O(4)-structure of spinors). The space of Cl1(3)-spinors R = ag + ajezes +
azese) + azejey can be endowed with a 4D Euclidean norm |R|?> = RR = a% + a% + a% +a§
induced by the inner product (R;,R;) = %(R 1Ry + RyR1) between two spinors Ry and R».

This allows one to reinterpret the group of 3D spinors generated from a 3D root system as a
set of 4D vectors, which in fact can be shown to satisfy the axioms of a root system as given in
Definition 2.1.

Theorem 3.2 (Induction Theorem). Any 3D root system gives rise to a spinor group G which
induces a root system in 4D.

Proof. Check the two axioms for the root system ® consisting of the set of 4D vectors given by
the 3D spinor group:

(1) By construction, & contains the negative of a root R since spinors provide a double
cover of rotations, i.e. if R is in a spinor group G, then so is —R , but no other scalar
multiples (normalisation to unity).

(2) @ is invariant under all reflections with respect to the inner product (Ry,R) in Propo-
sition 3.1 since R}, = R, —2(R1,R2)/(R1,R1)R) = —R1~R’2R1 € G for R,R; € G by the
closure property of the group G (in particular —R and R are in G if R is).

g

Since the number of irreducible 3D root systems is limited to (A3, Bz, H3), this yields a definite
list of induced root systems in 4D — this turns out to be (Dy, Fy,Hy), which are exactly the
exceptional root systems in 4D. In fact both sets of three are trinities: named after Arnold’s ob-
servation that many related objects in mathematics form sets of three, beginning with the trinity
(R,C,H) [1, 2], and extending to projective spaces, Lie algebras, spheres, Hopf fibrations etc.
Arnold’s original link between these two trinities (A3, B3, Hs) and (D4, Fy, Hy) that arise here is
extremely convoluted, and our construction presents a novel direct link between the two.

These root systems are intimately linked to the Platonic solids [5] — there are 5 in three dimen-
sions and 6 in four dimensions: A3 describes the reflection symmetries of the tetrahedron, Bj3
those of the cube and octahedron (which are dual under the exchange of faces and vertices),
and H; describes the symmetries of the dual pair icosahedron and dodecahedron (the rotational
subgroup is denoted by I = Ajs).

Likewise, the 4D Coxeter groups describe the symmetries of the 4D Platonic solids, but this
time the connection is more immediate — the root systems are actually Platonic solids them-
selves: Dy is the 24-cell (self-dual), an analogue of the tetrahedron, which is also related to
the F4 root system, and the Hy root system is the Platonic solid the 600-cell. Its dual, the
120-cell of course has the same symmetry. The root system Aif generates the root system A%,
which constitutes the vertices of the Platonic solid 16-cell, and its dual is the 8-cell. There is
thus an abundance of root systems in 4D that are related to the Platonic solids, and in fact the
only one not equal or dual to a root system is the 5-cell with symmetry group A4 — which of
course could not be a root system, as it has an odd number (5) of vertices. This abundance of
root systems in 4D can in some sense be thought of as due to the accidentalness of our spinor
construction. In particular, the induced root systems are precisely the exceptional (i.e. they
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do not have counterparts in other dimensions) root systems in 4D: Dy has the triality symme-
try (permutation symmetry of the three legs in the diagram) that is exceptional in 4D and is
of great importance in string theory, showing the equivalence of the Ramond-Neveu-Schwarz
and the Green-Schwarz strings. Fy is the only F'-type root system, and Hy is the largest non-
crystallographic root system. In contrast, in arbitrary dimensions there are only A,, (n-simplex),
and B,, (n-hypercube and n-hyperoctahedron).

Not only is there an abundance of root systems related to the Platonic solids as well as their
exceptional nature, but they also have unusual automorphism groups, in that the order of the
groups goes as the square of the number of roots. This is also explained via the above spinor
construction via the following result:

Theorem 3.3 (Spinorial symmetries). A root system induced through the Clifford spinor con-
struction via a binary polyhedral spinor group G has an automorphism group that trivially
contains two factors of the respective spinor group G acting from the left and from the right.

This systematises many case-by-case observations on the structure of the automorphism groups
[12, 13], and shows that all of the 4D geometry is already contained in 3D [4]. For instance, the
automorphism group of the Hy root system is 2/ X 2/ — in the spinor picture, it is not surprising
that 2/ yields both the root system and the two factors in the automorphism group. We therefore
consider the example of the induction H3 — H, in more detail.

We construct the spinor group generated by the simple reflections of H3. The simple roots are

taken as o = ey, 0p = —%((‘C —1)e; +ex+ 7e3), and o3 = e3. Under free multiplication, these
generate a group with 240 pinors, and the even subgroup consists of 120 spinors, for instance
of the form aya = —3(1 — (7 — )ejes + Teze3) and oz = —3(T— (T — 1)eser + eze3).

These are the double covers of I = As and H3 = A5 X Z;, respectively. The spinors have four
components (1, ejes, exes, e3eq); by taking the components of these 120 spinors as a set of
vectors in 4D, one obtains the 120 roots in the Hy root system. This is very surprising from a
Coxeter perspective, as one usually thinks of H3 as a subgroup of Hy, and therefore of Hy as
more ‘fundamental’; however, one now sees that H4 does not in fact contain any structure that
is not already contained in H3, and can therefore think of H3 as more fundamental [4].

From a Clifford perspective it is not surprising to find this group of 120 spinors, which is the
binary icosahedral group 2/, since Clifford algebra provides a simple construction of the Spin
groups; however, this is groundbreaking from the conventional Coxeter and Lie group perspec-
tive. This spinor group 2/ has 120 elements and 9 conjugacy classes. [ has five conjugacy
classes and it being of order 60 implies that it has five irreducible representations of dimen-
sions 1, 3, 3, 4 and 5 (since the sum of the dimensions squared gives the order of the group
Zdiz = |G|). The nine conjugacy classes of the binary icosahedral group 27 of order 120 mean
that this acquires a further four irreducible spinorial representations 2, 2., 45 and 6;. It is worth
pointing out that it is convenient to have all these 4 different types of polyhedral groups in a uni-
fied framework within the Clifford algebra, rather than using SO(3) matrices for the rotations
and then having to somehow move to SU (2) matrices for the binary groups.

This binary icosahedral group has a curious connection with the affine Lie algebra E; (and
likewise for the other binary polyhedral groups and the affine Lie algebras of ADE-type) via
the so-called McKay correspondence [14], which is twofold: We can define a graph by as-
signing a node to each of the nine irreducible representation of the binary icosahedral group
with the following rule for connecting nodes: each node corresponding to a certain irreducible
representation is connected to the nodes corresponding to those irreducible representations that
are contained in its tensor product with the irrep 2. For instance, tensoring the trivial repre-
sentation 1 with 2 trivially gives 2; and thus the only link 1 has is with 2;; 2, ® 2, =143,
such that 2; is connected to 1 and 3, etc. The graph that is built up in this way is precisely the
Dynkin diagram of affine Eg, as shown in Figure 1. The second connection is the following
observation: the Coxeter element is the product of all the simple reflections «; ... og and its
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FIGURE 1. The graph depicting the tensor product structure of the binary icosa-
hedral group 21/ is the same as the Dynkin diagram of affine Eg.

Platonic solids
(T, 0.1)
3D Coxeter groups
(AS; BE: H3)
Roots |®] (12, 18, 30)

PPD Clifford pinors
PPD Clifford spinors

Binary polyhedral groups
spinors (27T, 20, 2I)
Sodi: (12, 18, 30)

S d2: (24, 48, 120)

McKay correspondence ) )
PPD Clifford spinors PPD Clifford pinors
Exceptional 4D

root systems

‘ Pinors of Hs: 240 1

Lie Groups .
(D4, Fy, Hy) Dynkin diagram symmetry (Es, Er, Es) Exceptional 8D
Roots |®| Coxet:ar mslmbers — root system FEj
(24, 48, 120) (12 18, 30) Roots |®| = 240

| Aut ()]
(2 - 242, 482, 120%)

FIGURE 2. Web of connections putting the original McKay correspondence and
trinities into a much wider context. The connection between the sum of the
dimensions of the irreducible representations d; of the binary polyhedral groups
and the Coxeter number of the Lie algebras actually goes all the way back to
the number of roots in the 3D root systems (12, 18,30) — these then induce the
binary polyhedral groups (linked to McKay) and the 4D root systems via the
Clifford spinor construction. The new pinor construction links H3 directly with
Eg explaining the latter entirely within 3D geometry.

order, the Coxeter number £, is 30 for Eg. This also happens to be the sum of the dimensions of
the irreducible representations of 2/, } d;. This extends to all other cases of polyhedral groups
and ADE-type affine Lie algebras (c.f. Figure 2).

The connection between (A3, B3, H3) and (Eg, E7, Eg) via Clifford spinors does not seem to be
known. In particular, we note that (12,18,30) is exactly the number of roots & in the 3D root
systems (A3, B3, Hs), which feeds through to the binary polyhedral groups and via the McKay
correspondence all the way to the affine Lie algebras. Our construction therefore makes deep
connections between trinities, and puts the McKay correspondence into a wider framework, as
shown in Figure 2. It is also striking that the affine Lie algebra and the 4D root system trinities
have identical Dynkin diagram symmetries: D4 and Egr have triality S3, F4 and E7Jr have an S,
symmetry and Hs and E; only have S, but are intimately related as explained in Section 5.
There is thus an indirect connection between the icosahedron and the exceptional Eg. In the
next section we will show a new, explicit direct connection within the Clifford algebra of 3D
by identifying the 240 roots of Eg with the 240 pinors of icosahedral symmetry (right of Figure
2).
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4. THE BIRTH OF Eg OUT OF THE SPINORS OF THE ICOSAHEDRON

Previously, we discussed the construction of the 120 elements of the binary icosahedral group,
which can be reinterpreted as the 120 roots of Hs. We list these here in terms of the 4D basis

(+1,0,0,0) (8 permutations)
1
E(il,il,il,il) (16 permutations)

1
5(0, +1,+0,47) (96 even permutations) .

A convenient set of simple roots for Hy is given by a; = %(—G, -17,0,—1),a, = %(0, —0,—-1,1),
a3 =73(0,1,—0,—7) and as = 3(0,—1,—0, 7).

Since the Hs root system contains three orthogonal roots, e.g. (1,0,0), (0,1,0) and (0,0,1),
the pinor group generated under free Clifford multiplication contains the inversion, given by
+ejepez = +1. So when the 120 even products of root vectors stay in the spinor even 4D
subalgebra consisting of scalar and bivector parts, then the inversion creates a second copy of
this of 120 odd products in the vector and pseudoscalar 4D subalgebra. So what one gets for
the 240 pinors double covering the group Hs of order 120, is a copy of Hy with 120 roots and
another copy multiplied by /, i.e. in the 8D Clifford algebra of 3D space — which is an 8D
vector space — one gets 240 objects, as one would expect for a construction of Eg.

As an aside, in terms of a quaternionic description of the even subalgebra, the H3 root system
consists precisely of the pure quaternions, i.e. those without a real part, and the full group
can be generated from those under quaternion multiplication. This is very poorly understood
in the literature, and just hinges on the above description in terms of spinors together with
the fact that the inversion £/ is contained in the full H3 group, as one can then trivially Hodge
dualise root vectors to bivectors, which are pure quaternions. We have explained this in previous
work [4]. For instance, the statement is not true when the inversion is not contained in the
group, as is the case for A3. However, the spinorial induction construction still works for this,
yielding D4. Moreover, the ‘quaternionic generators’ generating the 4D groups via quaternion
multiplication are just seen to be the even products of 3D simple roots ¢ 0 and 0 03 so that
the 4D group manifestly does not contain anything that was not already contained in the 3D
group. We therefore believe the spinor induction point of view of going from 3D to 4D is more
fundamental than the pure quaternion approach identifying the 3D group as a subgroup of the
4D group.

For the set of 240 pinors we now define a ‘reduced inner product’: we keep the spinor copy of
H,4 and multiply the copy /H,4 by 71, then take inner products taking into account the recursion
relation 72 = 7+ 1 but finally in this inner product counterintuitively setting T equal to zero.
This set of 240 includes the simple roots of Hy

1
ay = _(_67_1707_1)7

2
1
ay = 5(07 —0,—7T, 1)7
1
az = E(O’ l,—0,—7) and
1
aq = 5(07_17_677:)
along with their T-multiples
1
as = Tay) = 5(1,—1— 1,0,—1),
1
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FIGURE 3. Coxeter-Dynkin diagram folding and projection from Eg to Hjy.

1
a7 = Taz = 5(0,1,1,—1— 1) and

1
ag = Taq = 5(0,—”5,1,T—|— 1).

So with this inner product, most of the inner products among the two sets of H, are not affected,
but crucially, there is one product that makes a link between the two H, diagrams, turning it
precisely into the Eg diagram. The 240 icosahedral pinors therefore precisely give the 240 roots
of Eg. The Cartan matrix for this set of simple roots is

2 -1 0 0 O O 0 O
-1 2 -1 0 0 O O O
o -1 2 0 0 0 0 -1
o o o0 2 0 0 -1 0
o o o0 o0 2 -1 0 0]’
o o o0 o0 -1 2 -1 0
o o o0 -1 0 -1 2 -1
o 0 -1 0 0 O -1 2

which is the Eg Cartan matrix in slightly unusual form.

Surprisingly, the Eg root system has therefore been lurking in plain sight in the geometry of
the Platonic solid the icosahedron for three millennia, without anyone noticing. As with the
4D induction construction, this discovery was only possible in Clifford algebra — there is much
prejudice against the usefulness of Clifford algebras (since they have matrix representations)
and usually matrix methods are equivalent if less insightful — but the 4D and 8D induction
constructions are to my knowledge the only results that require Clifford algebra and were com-
pletely invisible to standard matrix methods.

5. Hy AS A GROUP OF ROTATIONS RATHER THAN REFLECTIONS II: FROM Eg

The usual view is the reverse of the process shown in the previous section, inducing Eg from
Hj3, via two intermediate copies of Hy: Eg has an Hy subgroup as can be shown via Coxeter-
Dynkin diagram foldings [16]. We take the simple roots ; to ag of Eg as shown in Fig. 3, and
consider now the Clifford algebra in 8D with the usual Euclidean metric. The simple reflections
corresponding to the simple roots are thus just given via sqv = —ovee. The Coxeter element
w is defined as the product of all these eight simple reflections, and in Clifford algebra it is
therefore simply given by the corresponding pinor W = «; ... Qg acting via sandwiching. Its
order, the Coxeter number 4 (i.e. W" = +1), is 30 for Eg.
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As illustrated in Figure 3, one can define certain combinations of pairs of reflections (corre-
sponding to roots on top of each other in the Dynkin diagram folding), e.g. s4, = Sq,Sa; €tC,
and in a Clifford algebra sandwiching way these are given by the products of root vectors
ay = o0y, ay = 00, az = 0305 and a4 = 0 0g (this is essentially a partial folding of the
usual alternating folding used in the construction of the Coxeter plane with symmetry group
L (h), see the next section). It is easy to show that the subgroup with the generators s, in fact
satisfies the relations of an Hy Coxeter group [3, 16]: because of the Coxeter relations for Eg
and the orthogonality of the combined pair the combinations s, are easily seen to be involu-
tions, and the 3-fold relations are similarly obvious from the Coxeter relations; only for the
5-fold relation does one have to perform an explicit calculation in terms of the reflections with
respect to the root vectors. This is thus particularly easy by multiplying together vectors in
the Clifford algebra, rather than by concatenating two reflection formulas of the type shown in
Definition 2.1 — despite it only consisting of two terms, concatenation gets convoluted quickly,
unlike multiplying together multivectors.

Since the combinations s, are pairs of reflections, they are obviously rotations in the eight-
dimensional space, so this H4 group acts as rotations in the full space, but as a reflection group in
a 4D subspace. The H; Coxeter element is given by multiplying together the four combinations
a; — its Coxeter versor is therefore trivially seen to be the same as that of Eg (up to sign, since
orthogonal vectors anticommute) and the Coxeter number of H, is thus the same as that of Eg,
30. The projection of the Eg root system onto the Coxeter plane consists of two copies of the
projection of Hy into the Coxeter plane, with a relative factor of 7 (see the next section and in
particular Figure 8). This is also related to the fact that on the level of the root system there is a
projection which maps the 240 roots of Eg onto the 120 roots of Hy and their T-multiples [15, 9]
(right of Fig. 3 and previous section). We therefore now consider the Coxeter plane itself.

6. THE COXETER PLANE

In this section, we consider the geometry of the Coxeter plane e.g. achieved by a complete
folding of the Eg Dynkin diagram (Figure 4). For a given Coxeter element w of any root
system, there is a unique plane called the Coxeter plane on which w acts as a rotation by
27 /h. Projection of a root system onto the Coxeter plane is thus a way of visualising any
finite Coxeter group, for instance the well-known representation of Ey is such a projection of
the 240 vertices of the root system onto the Coxeter plane. In the standard theory there is an
unnecessary complexification of the real geometry followed by taking real sections again just
so that complex eigenvalues exp(2mim/h) of w, for some integers m called exponents, can be
found [11]. Unsurprisingly, in Clifford algebra these complex structures arise naturally, and the
complex ‘eigenvectors’ are in fact eigenplanes where the Coxeter element acts as a rotation.
We briefly discuss the 2D case of the two-dimensional family of non-crystallographic Coxeter
groups I(n), followed by the three-dimensional groups Az, B3 and H3 [6], before discussing
the higher-dimensional examples.

The simple roots for I(n) can be taken as & = e, Gy = —cos Zey +sin Tes, which yields
the Coxeter versor W describing the n-fold rotation encoded by the I»(n) Coxeter element via
v—wy=WvW as

(D) W:OthCZZ—eXp(—TL'elez/n).

In Clifford algebra it is therefore immediately obvious that the action of the I>(n) Coxeter
element is described by a versor that encodes rotations in the eje;-Coxeter-plane and yields
h = n since trivially W" = (—1)"*1. Since I = eje; is the bivector defining the plane of e; and
ey, it anticommutes with both e; and e; such that one can take W through to the left to arrive at
the complex eigenvector equation

) v —wv=WwW = W2y =exp (£2nl /n)v.
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FIGURE 4. Illustration of the geometry of the Coxeter plane via diagram fold-
ings. Since any finite Coxeter group has a tree-like diagram, one can partition the
simple roots into two sets (black and white) of roots that are orthogonal within
each set. Since the Cartan matrix is positive definite, it has a Perron-Frobenius
eigenvector with all positive entries. This allows one to show the existence of
the invariant Coxeter plane (by construction) as the bivector defined by the outer
product of two vectors that are linear combinations of all the reciprocals of the
white (respectively black) simple roots with the corresponding coefficients given
by the entries in the Perron-Frobenius eigenvector.

This yields the standard result for the complex eigenvalues, however, in Clifford algebra it is
now obvious that the complex structure is in fact given by the bivector describing the Coxeter
plane (which is trivial for I,(n)), and that the standard complexification is both unmotivated
and unnecessary.

More generally, if v lies in a plane in which W acts as a rotation, then
3) v—wy=WwW = W2y

still holds, whereas if v is orthogonal, one just has

4) v—=wy=WwW =WWy=ny.

Thus, if W factorises into orthogonal eigenspaces W = W ... W, with v lying in the plane de-
fined by Wy, then all the orthogonal W;s commute through and cancel out, whilst the one that
defines the eigenplane v lies in gives the standard complex eigenvalue equation

(5 v—>wv:WvW:W1...kaWl...Wk:W12...Wkav:W12v.

If m is an exponent then so is & — m; in particular 1 and & — 1 are always exponents (from
the Coxeter plane) — in Clifford algebra it is easy to see that these are just righthanded and
lefthanded rotations in the respective eigenplanes, with bivectors giving the complex structures.
If W has pure vector factors then these act as reflections and trivially yield the exponents 4 /2.

The Pin group/eigenblade description in GA therefore yields a wealth of novel geometric in-
sight, and we now consider higher-dimensional examples. For 3D and 4D groups, the geometry
is completely governed by the above 2D geometry in the Coxeter plane, since the remaining
normal vector (3D) or bivector (4D) are trivially fixed. For H3 one has & = 10 and com-
plex eigenvalues exp(27mmi/h) with the exponents m = {1,5,9}. For simple roots oy = ey,
—20 = (T —1)e; + €2+ Te3 and o3 = e3, the Coxeter plane bivector is Be = eje; + Teze)
and the Coxeter element versor 2W = —7ey —e3+ (7 — 1) (here I = ejee3) with eigenvalues
exp (£2nB¢/h), which corresponds to m = 1 and m = 9. The vector bc = Bcl = —7Tep —e3
orthogonal to the Coxeter plane can only get reversed (since the Coxeter element in 3D is an
odd operation), so one has —WbecW = —b¢ = exp (£5 - 2B /h)bc which gives m = 5. A3 and
B3 is very similar, they have Coxeter numbers 7 = 4 and h = 6, respectively, and thus expo-
nents m = {1,2,3} and m = {1,3,5}. The exponents 1 and & — 1 correspond to a rotation in
the Coxeter plane in which the Coxeter element acts by /-fold rotation, whilst the normal to the
Coxeter plane gets simply inverted, corresponding to the cases /2 (m =2 and m = 3 for A3
and B3, respectively).
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() b (©)

(d) (e)

FIGURE 5. Coxeter projections of A4 (a) and b)) and H, (panel ¢)), H;f ! (d))
and D¢ Coxeter projection (e)). The action of the Coxeter element as an h-fold
rotation is visualised by the two coloured dots (green and blue) that are rotated
into another by this rotation.

We now consider the four-dimensional cases A4, B4, D4, F4 and Hy. We explain the case
of A4 in detail, which is known to have exponents {1,2,3,4}. We take as the simple roots
o) = 1/\/5(62 —el), O = 1/\/5(63 —62), O3 = 1/\/5(64 —63) and oy = 1/2(’561 + Tep +
Te3 + (T —2)eq). It is easy to calculate that reflections in these yield a root polytope of 20
vertices as well as the correct A4 Cartan matrix. This matrix has Perron-Frobenius eigenvector
(1,7,7, 1)T and one can construct the Coxeter plane bivector as B¢ o< —eje3 —ejeq + exez +
ereq —1/2(7— 1)eseq via the two vectors e3 +e4 and —ej +ep+e3+ (2T + 1)ey arrived at from
the Perron-Frobenius eigenvector and the reciprocal frame of the simple roots as illustrated in
Figure 4 . The Coxeter element W = o3 011 004 is calculated to be 4W = 1 —epes +ejeq + (T —
1)(6364 +erey —6163) — (‘L'—|— 1)6162 — (2”5— 1)61626364. It is easy to show that WBcW = B¢ and
the Coxeter element therefore indeed stabilises the Coxeter plane. However, we are claiming
that the Coxeter element can actually be written as bivector exponentials in the planes defined
by B¢ and IB¢, with angles given by the exponents {1,2,3,4}. These are given as left- and
righthanded rotations in the two planes as shown in Figure 5 a) and b). The Coxeter projection
of the 20 vertices forms two concentric decagonal circles — in the Coxeter plane w acts as a
rotation by 27 /5 (as denoted by the two coloured vertices in a) with the Coxeter element taking
one into the other), whilst in the plane /B¢ it acts as a rotation by 47/5, as shown in b). It
is easy to check that W can indeed be writen as W = exp($Bc) exp(—%’rIBc). It is clear that
taking the product of simple roots in the Coxeter element in a different order introduces overall
minus signs as well as minus signs in the exponentials, so we will not worry about these from
now on.

Ay is unusual in that the projection from 4D only yields two concentric circles in the Coxeter
plane. In fact, it consists of two copies of H, (panel c¢)) with a relative factor of 7. This is similar
to the situation for Eg and Hy, as explained in Fig. 3, since by removing four of the eight nodes
one gets a diagram folding from A4 to H;. In [8], we were considering affine extensions of
H, by adding a translation operator and taking the orbit under the compact group (panel d)).

What is striking is that this Hgf ! point set, i.e. an affine extension of the decagon after one
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unit translation, is very nearly the Coxeter projection of Dg, which is shown in panel e). The
situation for the other 4D groups is similar, as shown in Figure 6, which shows for the groups
By, Dy, Fy and Hy that the Coxeter element acts in the Coxeter plane B¢ as rotations by +-27 /h,
and in the plane defined by /B¢ as h-fold rotations giving the other exponents. For B4 one has
exponents {1,3,5,7} as shown in panels a) and b) and the decomposition into eigenblades of
the Coxeter element W = exp(gBc) exp(%”IBc) reflects this.

D4 has exponents {1,3,3,5} which is reflected in the fact that the Coxeter versor can be written
as W = exp(—"Bc)exp(F1Bc) = —exp(—*Bc)IBc. The Coxeter projections of Dy into the /B¢
plane demonstrate that the other factor in W that does not come from B is actually the product
of two vectors rather than a bivector exponential (since the angle is 7/2): on some vectors it
acts as a rotation by 3 = i/2 in the plane, others it projects onto the origin (Fig. 6 panels c)
and d)). Fj has exponents {1,5,7,11} which again is evident from the Clifford factorisation
W = exp({5Bc) exp(sl—gIBC) and the way it acts on the two planes (panels ¢) and f)). Hj has
exponents {1,11,19,29} and factorisation W = exp(35Bc¢) exp(g—O”IBc) (panels g) and h)).

The Coxeter versor of D¢ can be written as W = exp({5Bc¢) exp(Sl—ng)B3 for certain bivectors
B, and B; from which it is evident that the exponents are indeed {1,3,5,5,7,9}, with two
reflections and 10-fold rotations in the Coxeter plane and another orthogonal plane (Figure Fig.
7 a) and c)). Since as in Fig. 3 there is also a diagram folding from D¢ to H3 (H3 as we saw
above has exponents {1,5,9}), the Dg projection again actually consists of two copies of that
of Hz with a relative factor of 7 (panel b)), but the H3 projection already has radii with a relative
factor of 7 such that two orbits of the Dg projection fall on top of each other.

Not surprisingly, the Coxeter versor for Eg can be written as

/4 m Iz 137
W = exp(5;Bc)exp(5B2) exp( = -B3) exp(—~B4).
This gives the well-known exponents {1,7,11,13,17,19,23,29} a more geometric meaning as
30-fold rotations in four orthogonal eigenplanes (Fig. 8). As we have alluded to in Section 5,
the Coxeter projection of Eg actually consists of two copies of that of Hy in the bottom row of
Figure 6 with a relative radius of 7. We recall that Hy has exponents {1,11,19,29} and since it
is a subgroup of Eg they have of course the same Coxeter element and number, and share two
eigenplanes with exponents 1 and 29 as well as 11 and 19.

7. CONCLUSIONS

We have shown that with the help of Clifford algebra all exceptional root systems can in fact be
constructed from the 3D root systems. This offers a revolutionarily new way of viewing these
phenomena in terms of spinorial geometry of 3D, with huge potential implications for the many
areas in which these symmetries appear. Likewise, the geometry of the Coxeter plane is best
viewed in a Clifford algebra framework, which provides geometric meaning and insight, for
instance the complex eigenvalues in standard theory are just seen to be rotations in eigenplanes
of the Coxeter element. Since root systems exist on a vector space with an inner product, the
associated Clifford algebra of this space is actually the most natural framework to use for such
root systems and Coxeter groups, in particular as Clifford algebra affords a uniquely simple
reflection formula.
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FIGURE 6. Coxeter projections of B4, D4, F4 and Hy. In each row the plots are
the action of the Coxeter element in the Coxeter plane given by B¢ and in the
plane given by I/Bc.

147

13



14 THE Eg GEOMETRY FROM A CLIFFORD PERSPECTIVE

(a) (b) (©)

FIGURE 7. Coxeter projections of Dg (panels a) and ¢)) and Hsz (panel b)). The
two innermost radii of the H3 projection are precisely in the ratio of 7, such that
since the Dg projection consists of two copies of the H3 with a relative radius of
T, two orbits actually coincide. In the Coxeter plane and the other eigenplane
the Coxeter element acts by 10-fold rotation, as expected.
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FIGURE 8. Coxeter projections of Eg and Hy. Again, Eg consists of H4 and THy
with the Coxeter element acting as a 30-fold rotation in both.
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ABSTRACT. This paper exposes a very geometrical yet directly computational way of working
with conformal motions in 3D. With the increased relevance of conformal structures in archi-
tectural geometry, and their traditional use in CAD, the paper should be useful to designers and
programmers. In brief, we exploit the fact that any 3D conformal motion is governed by two
point pairs. The conformal motion of a point is composed of two orthogonal circular motions in
the planes determined by those point pairs. The resulting orbit of a point is a conformal spiral
on a Dupin cyclide.

These results are compactly expressed and programmed using conformal geometric algebra
(CGA), and this paper can serve as an introduction to its usefulness. In CGA language, the con-
formal motion is a rotor (or spinor), which can be written as the exponential of a bivector. That
bivector can be decomposed (in 3D almost always uniquely) as a sum of commuting 2-blades
B, and B_. These 2-blades are the point pairs, and they are direct elements of computation in
CGA. For a point x, the 3-blades x A B4 and x A B_ are orthogonal circles, and the rotor moves a
bit along each, in a ratio determined by the rotor decomposition. (The theoretical background to
these statements is the rather technical 2011 paper Square Root and Logarithm of of Rotors in
3D Conformal Geometric Algebra Using Polar Decomposition by Dorst and Valkenburg.) The
richness of conformal motions (and their Dupin cyclides) derives from the various types of point
pairs and their interaction. In CGA, these are all simply 2-blades, and treated in a com-pletely
unified manner. However, their geometrical interpretation differs: the 2-blades of 3D CGA may
represent a real point pair, an imaginary point pair (but computed with reals since only its
negative square enters computations), a tangent vector, a direction vector, a dual line (rotation
axis) or a ‘flat point’ (scaling center). With these unifying insights in their construc-tion the
specification, computation and interpolation of 3D conformal motions becomes much more
straightforward and interactive than in the usual coordinate-based approach, or through the
Atiyah factorization in a fixed sequence of standard conformal motions.

The paper will expose this geometrical ‘language’ of 3D conformal motions, and the accom-
panying presentation will demonstrate some of the interactive playing this enables, by direct
manipulation of the defining point pairs. We will for instance show how the usual Chasles de-
composition of Euclidean motions is included (and extended to similarities), and how to describe
all torus knots by the ratio of weights of two point pairs.

The advantage of using CGA is its covariance: conformal motions for other primitives such as
circles are computed using exactly the same formulas, and hence the software operations, as mo-
tions of points. This generates an interesting class of easily generated shapes of spatial circles
moving conformally on Dupin cyclide spirals.

The figure contains some screen shots of the demos we plan to give during the presentation.
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FIGURE 1. Some shots of the interactive demos. The point pairs determining
the motion are in black, the orbits of the simple comformal motion of each
point pair in green and blue. The orbit of a particular point under the composite
motion is indicated in red. (a) a (knotted) ring cyclide spiral motion, determined
by two commuting imaginary point pairs; (b) a cuspidal cyclide spiral motion,
determined by an imaginary point pair and a tangent vector; (c) a parabolic
cuspidal cyclide spiral motion, determined by an imaginary point pair and a
tangent vector, for a point on a carrier of a point pair; (d) a spindle cyclide spiral
motion, determined by an imaginary point pair and a real point pair; (e) a planar
horn cyclide spiral motion, for a point in the common plane of the defining point
pairs; (f) a spiral along a cone, the motion determined by a flat point and a dual

line.
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ABSTRACT. The aim of the present paper is to provide the first concise overview of a natu-
ral framework for arbitrary multi-scale computer science and systems biology computational
modeling based on a synergic coupling between GA and CICT to get stronger arbitrary-scale
biomedical and bioengineering computational solutions. GA and its extension to geometric cal-
culus (GC) unify, simplify, and generalize many areas of mathematics that involve geometric
ideas. For detecting and modeling a minute change in resistance or capacitance at biostrucuture
nanoscale, we need stronger research and computational tools able to overcome classic model-
ing limitation. We present key points solution to arbitrary multi-scale modeling problems. The
fundamental principles on computational information conservation theory (CICT), for arbitrary
multi-scale system modeling from basic generator and relation through discrete paths denser
and denser to one another, towards a never ending “’blending quantum continuum,” are recalled.
This paper is a relevant contribute towards arbitrary multi-scale computer science and systems
biology modeling, to show how GA and GC unified mathematical language combined to CICT
approach can offer an effective and convenient ”Science 2.0” universal framework to develop
innovative application and beyond, towards a more sustainable economy and wellbeing, in a
global competition scenario.

INTRODUCTION

The aim of the present paper is to provide the first concise overview of a natural framework
for arbitrary multi-scale computer science and systems biology computational modeling based
on a synergic coupling between GA (Geometric Algebra) and CICT (Computational Informa-
tion Conservation Theory) to get stronger arbitrary-scale biomedical and bioengineering com-
putational solutions. GA and its extension to geometric calculus (GC) [14] unify, simplify,
and generalize many areas of mathematics that involve geometric ideas. They also provide a
unified mathematical language for physics, engineering, and the geometrical aspects of infor-
mation science and computer science, quite well-known and appreciated by reliable scientific
modeling community. There is no doubt that the IC (Infinitesimal Calculus) has played in the
past and will play in future a major role in the mathematical treatment of engineering, bioengi-
neering and biomedical modeling problems. Nevertheless, we must be aware that its addiction
specifically on arbitrary multi-scale system modeling hides some fundamental features of the
natural phenomenon being represented, such as both its intrinsic invariant features (ontolog-
ical, topological, geometrical, etc.) and its extrinsic interaction with observer, to get overall
phenomenon formal observation, description and representation by humans. The addiction is
such that, since the digital computer requires a finite formulation of physical laws, it is pre-
ferred to discretize the differential equations, rather than considering other more convenient
tools like FDC (Finite Differences Calculus), Finite Difference Time Domain (FDTD) or more
sophisticated algebraic methods. FDC and FDTD deal especially with discrete functions, but
they may be applied to continuous function too and to continuum problems, with no loss of
generality. They can deal with both discrete and continuum problem categories conveniently.
Unfortunately, even traditional FDC, FDTD and more sophisticated and advanced algebraic
approaches are unable to conserve overall system formal information description. As a mat-
ter of fact, current Number Theory and modern Numeric Analysis still use mono-directional
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2 GA AND CICT FOR STRONGER ARBITRARY MULTI-SCALE SOLUTIONS

interpretation for numeric group generator and relations, so information entropy generation
cannot be avoided in current computational algorithm and application [8]. Furthermore, tra-
ditional digital computational resources are unable to capture and to manage not only the full
information content of a single Real Number R, but even Rational Number QQ is managed by in-
formation dissipation (e.g. finite precision machine, truncating, rounding, etc.) For observing,
modeling and determining single molecule transport characteristics or for detecting a minute
change in resistance or capacitance at biostrucuture nanoscale, we need stronger research and
computational modeling tools able to overcome the above operative limitation. According to
fresh CICT result, scientific community has acquired new awareness about traditional ratio-
nal number system Q numeric properties, quite recently [7]. Thanks to this line of generative
thinking, it is possible to realize that traditional rational number system can be even regarded as
a highly sophisticated open logic, powerful and flexible LTR (Left-To-Right) and RTL (Right-
To-Left) formal language of languages, with self-defining consistent words and rules, starting
from elementary generators and relations [7]. Further, CICT ODR (Observation, Description,
Representation) approach can take advantage immediately from those properties to develop
system computational functional closures to achieve information conservation countermeasure
at each operative step automatically [10]. Then, all computational information usually lost
by classic information approach, based on the traditional noise-affected data stochastic model
only, can be captured and fully recovered to arbitrary precision by a corresponding complemen-
tary codomain, step-by-step. Theoretically, codomain information can be used to correct any
computed result, achieving computational information conservation (virtually noise-free data),
according to CICT Infocentric World-view [11]. In this way, overall system resilience and
antifragility can be developed quite easily [23]. CICT has shown that, by Shannon entropy ap-
proach only, even the current, most sophisticated instrumentation system is completely unable
to reliably discriminate so called “random noise” (RN) from any combinatorially optimized
encoded message, which CICT called “deterministic noise” (DN) [10]. Stochastic vs. Combi-
natorially Optimized Noise generation ambiguity emphasises the major double-bind problem in
current most advanced research laboratory and instrumentation system, just at the inner core of
human knowledge extraction by experimentation in current science [10]. QFT (Quantum Field
Theory) has emerged from a major ontological paradigm shift with respect to Classical Physics
which still provides the traditional framework of the vision of nature of most ”Science 1.0” cur-
rent scientists. This change of paradigm has not yet been completely grasped by contemporary
science so that not all the implications of this change have been realized hitherto, even less their
related applications. So, the discreteness approach, developed under the “discreteness hypote-
sis” assumption, in specific scientific disciplines, has been considered in peculiar application
areas only. It has been further slowly developed by a few specialists and less understood by a
wider audience. It is the fresh QFT approach. Unfortunately, over the centuries, the above two
large scientific research areas (continuum based and discreteness based) have followed sep-
arate mathematical development paths with no or quite little, inconsistent synergic coupling.
That is the main reason why QFT is still mostly overlooked by traditional scientific and en-
gineering researchers for arbitrary multi-scale system modeling, from system nano-microscale
to macroscale. Unfortunately, the “probabilistic veil” can be very opaque computationally, in
a continuum-discrete arbitrary multi-scale environment, and misplaced precision leads to in-
formation dissipation and confusion [22]. To grasp stronger physical and biological system
correlates, scientists need two intelligently articulated hands: both stochastic and combinato-
rial approaches synergically articulated by natural coupling. The CICT approach brings classic
and quantum information theory together in a single framework, by considering information
not only on the statistical manifold of model states but also on the combinatorial manifold of
low-level discrete, phased generators and empirical measures of noise sources, related to ex-
perimental high-level overall perturbation [11]. The advantages of CICT approach combined to
GA and GC unified mathematical language can offer an effective and convenient ’Science 2.0”
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universal framework to develop innovative application and beyond, towards a more sustainable
economy and wellbeing, in a global competition scenario.

1. INERTIAL OBSERVER POV

The development of GA into a full-blown GC capable of handling all aspects of differential
geometry required a fusion of differential and integral calculus with the concepts of GA in the
past years. This task involved a reformulation of manifold theory at the most fundamental level
and was carried out in [14] with considerable detail. As an example with important implica-
tions, let us outline its application to classical relativistic electrodynamics, applied to biological
system modeling (e.g. fullwave electromagnetic modeling of brain waves). It is well known
that both the time domain and frequency domain based numerical computational electromag-
netic methods (i.e. Method of Moments (MoM), the Finite Element Method (FEM), etc.) for
solving the Maxwell’s equations suffer from the so-called “low-frequency-breakdown” prob-
lem [15]. They can only go down to a few hundred MHz in frequency, below which the result
they yield becomes very inaccurate relatively quickly. It is not uncommon, therefore, to resort
to quasi-static solvers once the frequency of interest falls below a certain frequency (say a few
MHz), and to ignore the contribution of the displacement currents, and, hence, the coupling be-
tween the electric and magnetic fields. Unfortunately, however, this approximation is not valid
for most of the materials inside the head, since the o /(®¢) ratio (¢ = medium conductivity,
o =(angular)frequency), € = medium permittivity ratio) of these materials is typically close to
1 [15, 19]. In fact, the quasi-static potential differs from the full-wave potential by nearly 30
% to 50 % [5], supporting the argument that a full-wave solution should be derived even at low
frequencies for the head-modeling problem, since the quasi-static approach is not sufficiently
accurate for the problem at hand. All the above, taking into account that neural activity inside
the brain results in low frequency waves known as brain waves. These brain waves can be
further classified into delta (0.1 to 3 Hz), theta (4 to 7 Hz), alpha (8 to 12 Hz), beta (12 to 30
Hz) and gamma (30 to 100 Hz) waves based on the rate of neural activity inside the brain. The
successes of neuroscience in the study of the structural and biochemical properties of neurons,
glia cells, and all the biological units and cellular structures in the brain have not yet filled the
gap between the behavior understood at cellular level (microscale) and the macroscopic dy-
namics involved in the traffic between the brain and the world around it. There is an essential
problem in the study of brain function (mesoscale dynamics) that even today, after so many
years since Karl Lashley posed his dilemma, still waits for a solution [17]. In quantum physics,
the space-time distribution of matter and energy has a coarse-grained structure which allows its
representation as an ensemble of quanta (particle representation). The local phase invariance is
shown to hold if a field exists which is connected to the space-time derivatives of the phase. GA
can show how spacetime invariant physical quantities can be related to the variables employed
by an inertial observer quite easily. We take into consideration a generic electromagnetic field
F, described by Riemann-Silberstein vector [1], and we follow the line of thought reported in
spacetime algebra (STA) [14, 12]. STA is built up from combinations of one time-like basis
vector Y and three orthogonal space-like vectors {7y, ¥, 73}, under the multiplication rule:

YW+ WYL = 2Ny,

where 7y, is the Minkowski metric with signature (+ - - -). F' is defined as a complexified
3-dimensional vector field. The value of F' at an event is a bivector according to GA [14].
The field bivector F' is the same for all observers; there is no question about how it transforms
under a change of reference system. However, it is easily related to a description of electric
and magnetic fields in a given inertial system. An inertial system is determined by a single
unit timelike vector Yy, which can be regarded as tangent to the worldline of an observer at rest
in the system. According to STA this vector determines a split of spacetime into space and
time, in other words a projection from 4-dimensional space into (3+1)-dimensional space, with
a chosen reference frame by means of the following two operations:
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e a collapse of the chosen time axis, yelding a 3D space spanned by bivectors;
e a projection of the 4D space onto the chosen time axis, yielding a 1D space of scalars;

which are most simply expressed by the equation:
(1 X =1t+x,

where t = x- 9 and x = x A ). This is just an example of a projective transformation. It is
a linear mapping of each spacetime point x(71,%,73) into a scalar ¢ designating a time and a
vector x designating a position. The position vectors for all spacetime points compose a 3-
dimensional Euclidean vector space R3. We denote the vectors in R with boldface type to
distinguish them from vectors in R>. The equation x = x A} tells us that a vector in R is
actually a bivector in R%,S' In fact, R? consists of the set of all bivectors in Ri3 which have the

vector )y as a factor. Algebraically, this can be characterized as the set of all bivectors in R% 3
which anticommute with Jy. This determines a unique mapping of the electromagetic bivector
F into the geometric algebra R3 of the given inertial system. The space-time split of F by Jp is
obtained by decomposing F into a part:

(2) E =1/2(F —nFn),
which anticommutes with ¥ and a part:

3) iB=1/2(F +0F),
which commutes with 7}, so we have:

4) F=E+iB,

where i = %1273 is the unit pseudoscalar. Although /B commutes with ¥, B must anticom-
mute since i does. Therefore, we are right to denote B as a vector in R3. Of course, E and B in
(4) are just the electric and magnetic fields in the yy-system, and the split of F into electric and
magnetic fields will be different for different inertial systems. The geometric algebra generated
by R3 is identical with the even subalgebra of R 3, so we write:

®) R; =R,

Moreover, (4) determines a split of the bivectors in R% 3 into vectors and bivectors of Rj3, as
expressed by writing

(6) R =R}+R.

This split is not unique, however, as it depends on the choice of the vector . A complete
discussion of space-time splits is given in [12, 13]. Finally, we should point out that the purpose
of a spacetime split is merely to relate invariant physical quantities to the variables employed
by a specific inertial observer.

2. QFT INTERACTION DYNAMICS

For the purpose of mapping the brain, we are interested in estimating the fields at different
points inside the head in the frequency range of 0.1-100 Hz when either one or many sources
are located inside the head. In the case of a system made up of electrically charged components
(nuclei and electrons of atoms), as, for instance, a biological system, this is just the electromag-
netic (e.m.) potential Ay, where U is the index denoting the usual four space-time coordinates
Yo = ct, 1,7, 73. The electric and magnetic fields are suitable combinations of the space-time
derivatives of A,. In order to get the local phase invariance, we should assume that the system
Lagrangian is invariant with respect to specific changes of the field A;. Thus a specific prin-
ciple of invariance, named “gauge invariance,” emerges; hence the name “gauge field” denotes
Ay Actually it is well known that the Maxwell equations just obey the gauge invariance, which
in quantum physics becomes the natural partner of the phase invariance to produce our world.
Quantum fluctuations give rise to e.m. potentials which spread the phase fluctuations beyond
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the system at the phase velocity. This gives an intrinsic nonlocalizability to the system and
prevents a direct observation of quantum fluctuations. Through the e.m. potential, the system
gets a chance to communicate with other systems. Notice that all e.m. interactions occur in a
two-level way; the potential keeps the interacting particles phase-correlated whereas the com-
bination of its space-time derivatives, named e.m. field, accounts for the forces involved. The
lower level, the potential, becomes physically observable only when the phase of the system
assumes a precise value. The structure of electrodynamics makes possible the presence of a
potential also when both electric and magnetic fields are absent, whereas on the contrary fields
are always accompanied by potentials. The above solution, which stems from the mathematical
formalism of QFT [2], opens the possibility of tuning the fluctuations of a plurality of sys-
tems, producing therefore their cooperative behavior. However, some conditions must be met
in order to implement such a possibility. Let us, first of all, realize that in quantum physics
the existence of gauge fields, such as the e.m. potential, dictated by the physical requirement
that the quantum fluctuations of atoms should not be observable directly, prevents the possi-
bility of having isolated bodies. For this reason, the description of a physical system is given
in terms of a matter field, which is the space-time distribution of atoms/molecules, coupled
to the gauge field with the possible supplement of other fields describing the nonelectromag-
netic interactions, such as the chemical forces. According to the principle of complementarity,
there is also another representation where the phase assumes a precise value; this representation
which focuses on the wave-like features of the system cannot be assumed simultaneously with
the particle representation. The relation between these two representations is expressed by the
uncertainty relation, similar to the Heisenberg relation between position and momentum:

(N ANA® > 1/2

connecting the uncertainty of the number of quanta (particle structure of the system) AN and
the uncertainty of the phase (which describes the rhythm of fluctuation of the system) A®.
Consequently, the two representations we have introduced above correspond to the two extreme
cases.

e (A) If AN =0, the number of quanta is well defined, so that we obtain an atomistic
description of the system, but lose the information on its capability to fluctuate, since
A® becomes infinite. This choice corresponds to the usual, classic description of objects
in terms of the component atoms/molecules.

e (B) If A® = 0, the phase is well defined, so that we obtain a description of the move-
ment of the system, but lose the information on its particle-like features which become
undefined since AN becomes infinite. Such a system having a well-defined phase is
termed coherent in the physical jargon.

In the phase representation, the deepest quantum features appear since the system becomes
able to oscillate with a well-defined phase only when the number of its components becomes
undefined, so that it is an open system and able to couple its own fluctuations to the fluctuations
of the surroundings. In other words, such a coherent system, like a biological one, is able to
“feel” the environment which is immersed within, through the e.m. potential created by its
phase dynamics. In conclusion, a coherent system involves two kinds of interaction:

e (1) an interaction similar to that considered by Classical Physics, where objects in-
teract by exchanging energy. These exchanges are connected with the appearance of
forces. Since energy cannot travel faster than light, this interaction obeys the principle
of causality;

e (2) an interaction where a common phase arises among different objects because of
their coupling to the quantum fluctuations and hence to an e.m. potential. In this case
there is no propagation of matter and/or energy taking place, and the components of the
system “talk” to each other through the modulations of the phase field travelling at the
phase velocity, which has no upper limit and can be larger than c, the speed of light.
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The process of the emergence of coherent structures out of a crowd of independent component
particles has been investigated in the last decades and is presently quite well understood [3, 24].
The presence of this field has received experimental corroboration by the discovery of the so-
called "Lamb shift,” named after the Nobel prize winner Lamb [16]. He discovered as far back
as in 1947 that the energy level of the electron orbiting around the proton in the hydrogen
atom is slightly shifted (about one part per million) with respect to the value estimated when
assuming that no e.m. field is present. Further corroboration for the existence of vacuum
fluctuations is provided by the Casimir effect [18]. Therefore a weak e.m. field is always
present, just the one arising from the vacuum quantum fluctuations.

3. MESOSCALE STRUCTURE EMERGENT DYNAMICS

We should now pay attention to the fundamental relative dependency of the characteristic scales
present in the problem we are dealing with. An atom has a size of about 1 Angstrom (A)
which amounts to 1073 cm, whereas a typical excitation energy is in the order of some electron
volts (eVs), corresponding to a wavelength of the associated e.m. fluctuation in the order of
some thousand A. This means that the tool (the e.m. fluctuation) able to induce a change of
configuration in the atom is some thousands of times wider than the atom itself. Hence a single
quantum fluctuation can simultaneously involve many atoms. In the case, for instance, of the
water vapor at boiling temperature and normal pressure, the exciting e.m. mode (in this case 12
eV) would include in its volume about 20,000 molecules. Let us assume now that in the volume
V = A3 of the fluctuation there are N atoms. Let P be the probability (calculated by using 'Lamb
shift’-like phenomena [16]) that an isolated atom is excited by an e.m. quantum fluctuation.
Therefore the probability Py that one out of the N atoms gets excited by the fluctuation is given
by:

(8) Py=PN=PA*(N/V)=PA%d,

where d is the density of atoms. We can see that there is a critical density d.,;; such that Py =1,
which means that the fluctuation excites with certainty one atom. In such conditions, the vir-
tual photon coming out from the vacuum is handed over” from one atom to another and gets
permanently entrapped within the ensemble of atoms, being busy in keeping always at least
one atom excited. According to this dynamics atoms acquire an oscillatory movement between
their two configurations. In a short time, many quantum fluctuations pile up in the ensemble,
producing eventually a large field which keeps all atoms oscillating between their two config-
urations. Moreover, the field gets self-trapped in the ensemble of atoms since its frequency
becomes smaller; actually the period of oscillation T of the free field should be extended by
adding the time spent within the excited atoms. Like in the cavity of a laser, the field becomes
coherent, that is, acquires a well-defined phase, in tune with the oscillations of the atoms, which
therefore become coherent, too. The more realistic case of atoms having a plurality of excited
states has been also successfully addressed and needs a more sophisticated mathematics [20].
Among all the excited levels, the one selected for giving rise to the coherent oscillation is the
level requiring the smallest time to self-produce a cavity. The region becomes a coherence do-
main (CD) whose size is the wavelength of the e.m. mode, where all atoms have tuned their
individual fluctuations to each other and to the oscillation of the trapped field [4]. The size of
the coherence domain cannot be arbitrary but is determined in a selfconsistent way by the dy-
namics underlying the emergence of coherence via the wavelength of the involved e.m. mode.
A coherent system is therefore an ensemble of self-determined e.m. cavities. The fact that a
biological system appears to be a nested ensemble of cavities within cavities of different sizes
(organs, tissues, cells, organelles, etc.) having well-defined sizes is a strong indication for its
coherence. In a CD there is a common phase, specific of the CD, which is therefore an object
governed by a dynamics which eliminates the independence of the individual components and
creates a unitarily correlated behavior of all of them, governed by the e.m. field. A peculiar
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feature appears in the case of water. The coherent oscillation of the water molecules, which in-
duces the formation of the CDs, occurs between the molecule’s ground state and an excited state
at 12.06 eV, which is slightly below the ionization threshold at 12.60 eV. The electron cloud
of the water molecule oscillates between a configuration where all electrons are tightly bound
(in this configuration water is an insulator and a mild chemical oxidant, since it is able to bind
an extra electron) and a configuration where one electron is almost free (in this configuration
water becomes a semiconductor and a chemical reducer, since it is able to release electrons).
In conclusion, liquid water (which contributes about 70 % of the total mass and 99 % of the
total number of component molecules of a living organism) exhibits a twofold inner dynamics
[4]. This feature confirms the proposal of Schrodinger [21] about the need of negative entropy
(negentropy) for the appearance of order in living systems. The theoretical framework out-
lined above has increasingly received support by a growing body of evidence. First of all, one
should realize that the QFT picture satisfies the two main requirements demanded by biological
evidence: the existence of selective recognition and attraction among biomolecules (organic
codes) and long-range connections among biocomponents which cannot be accounted for by
the very short-range interactions implied by a purely chemical dynamics. Secondly, ”Science
1.0” researchers and scientists are completely unware that QFT picture is already well present
and hardwired in our current computational tools. This new awareness leads to our exploitation
of more effective and competitive computational modeling tools by CICT.

4. CICT QFT RESULTS

CICT is a natural framework for arbitrary multi-scale computer science and systems biology
computational modeling in the current landscape of modern QFT [10, 9]. CICT new awareness
of a discrete HG (hyperbolic geometry) subspace (reciprocal space) of coded heterogeneous
hyperbolic structures [10], underlying the familiar (Q Euclidean (direct space) surface repre-
sentation can open the way to holographic information geometry (HIG) [7, 9]. CICT founding
principles are the same on which Riemannian manifold theories are founded, principles of rel-
ativity and covariance, of optimization (least action and geodesic principles), applied to scale
and accuracy relativity transformations of the reference system in HG. CICT interprets natu-
ral rational “OpeRational” (OR, [7] for definition) representation as a language of languages
of phased directed number systems quite easily. In fact, we can take the concepts of modular
magnitude and direction as basic, and introduce the concept of vector as the basic kind of di-
rected number, with an associated phasing relation. Directed numbers are defined implicitly by
specifying rules for adding and multiplying vectors. Furthermore, they can be related uniquely
to their remainder sequences to identify “quantum support field” sequences, which subspace
inner phased generators can be computed from. CICT framework is quite flexible and can be
used under a few major operational representations. For instance, CICT can see rational geo-
metric series as simple recursion sequences in a wider recursive operative framework where all
algebraic recursion sequences of any countable higher order include all the lower order ones
and they can be optimally mapped to rational number system QQ operational representations and
generating functions (OECS, Optimized Exponential Cyclic Sequences, [11]). For instance,
arithmetic progression and Lucas sequences are recursion sequences of the second order. Lu-
cas sequences are certain integer sequences that satisfy Lucas recurrence relation defined by
polynomials U, (P,Q) and V,(P,Q), where U, V,, are specific polynomials and P, Q are fixed
integer coefficients. Any other sequence satisfying this recurrence relation can be represented as
a linear combination of the Lucas sequences U, (P, Q) and V,,(P,Q). Famous examples of Lucas
sequences include the Fibonacci numbers, Mersenne numbers, Pell numbers, Lucas numbers,
Jacobsthal numbers, and a superset of Fermat numbers. CICT is able to fold any recursion
sequence of the first order into one digit number Dy, any recursion sequence of second order
into a two digit number D;, any recursion sequence of the third order into a three digit number
D5 and so on to higher orders. Then, you can interpret their asymptotic convergence ratios as
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increasing accuracy approximations to related asymptotic roots from corresponding first, sec-
ond, third, ..., n —th order equations respectively. CICT result can be presented even in term
of classic or formal power series to show the close relationships to classic and modern control
theory approaches for causal continuous-time and discrete-time linear systems. Increasing the
subspace representation accuracy, the total number of allowed convergent paths, as monotonic
power series, for instance (as allowed subspace paths), increases accordingly till maximum
machine word length and beyond; like discrete quantum paths denser and denser to one an-
other, towards a never ending “blending quantum continuum,” called quantum mixture” by a
Top-Down (TD) perspective for composite multi-scale system. The finer geometry of subspace

1/(N-1) <=3 1/N > 1/(N+1)

Upscale Contiguity Operator  Downscale Contiguity Operator

N+1

N—1 : ] N

o 1 & I . 1-'(] [k+1) 1
Y C) PRI i 1 L

Input Output

FIGURE 1. Egyptian fractions QQ subset as the discrete continuum of connected
rationals (with no loss of generality) with two basic contiguity operators for LTR
(downscale) and RTL (upscale) sequencing.

itself becomes scale dependent. While differentiable trajectories found in standard mathemati-
cal physics are automatically scale invariant, it is the main insight of the CICT theory that also
certain non-differentiable paths (resultant paths, emerging from lower scales combined quan-
tum trajectory interactions, which explicitly depend on the scale and accuracy of the observer)
can be scale invariant. (Q can be thought as a discrete continuum of connected rationals (Fig.1)
with two basic contiguity operators, LTR (downscale) and RTL (upscale). The first LTR CICT
fundamental relationship that ties together numeric body information of LTR convergent mono-
tonic power series in any base (in this case decimal, with no loss of generality) with D right
ending by digit 9 is given by the following equation:

1 & 1 (D
® D_,;)loW(loW> ’
where D is the additive 10V complement of D, i.e. D= (10W — D), W is the word represen-
tation precision length of the denominator D and ”Div’ means “Divergence of”. When D > D
the formal power series of (9) can be re-scaled modD, to give multiple convergence paths to
1/D, but with different ”convergence speeds.” The second LTR CICT fundamental relationship
for LTR sequences relates power information to evolutive polynomially ordered representation

structure counterpart exactly. For any base r and for any Natural number D it is given by the
following equation [11]:

k—1
(10) Df+D;- (Z D;".rW'("mU) —Mk=o,
m=0 k

where D, is the additive rV complement of D,, i.e. D, = (rW — D). In previous paper [10], we

already saw that CICT can supply us with co-domain OECSs perfectly tuned to their low-level
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multiplicative noise source generators, related to experimental high-level overall perturbation
[10]. Now, by (10), polynomial co-domain information functional closure can be used to eval-
uate any computed result at arbitrary scale, and to compensate conveniently, to achieve multi-
scale computational information conservation by LTR sequences. Analogous relationships can
be written for RTL power sequences [11]. Eventually, by comparing LTR and RTL sequences,
we arrive to the general relationship that ties together numeric body information of divergent
(RTL) and convergent (LTR) monotonic power series in any base (in this case decimal, with no
loss of generality), with D ending by digit 9. It is given by the following CICT fundamental
LTR-RTL correspondence equation:

1 & 1 ( D\ 1

11 ng =
" o= Lo (i07) = g5,
with the usual meaning of symbols given for (9). Further generalizations of (11) related to D
ending by digit 1 or 3 or 7 are straightforward [11]. Now, it is convenient to use a compact
notation for LTR geometric series as follows:

1 & N [ CR\F
BZI;)M)_W(M_W) — N (CRw),

where D is a denominator, N a numerator, CR the power series constant ratio, and W the length
of their digit strings. Then, it is immediate to verify that at W = 1 (precision = 10~!), unity can
emerge out of a foundamental symmetrical multiplicity of different countable paths:

19)=1/1,28)=1/1,3(7) = 1/1, 4(6) = 1/1, 5(5) = 1/1, 6(4) = 1/1, 7(3) = 1/1, 8(2) = 1/1,
9(1) = 1/1.

At W = 2 (precision = 1072), we have: 01(99) = 1/1, 02(98) = 1/1, 03(97) = 1/1, 04(96) =
1/1, 05(95) = 1/1, ..., 96(04) = 1/1, 97(03) = 1/1, 98(02) = 1/1, 99(01) = 1/1.

At W = 3 (precision = 1073), we have: 001(999) = 1/1, 002(998) = 1/1, 003(997) = 1/1,
004(996) = 1/1, 005(995) = 1/1, ..., 996(004) = 1/1, 997(003) = 1/1, 998(002) = 1/1,
999(001) =1/1. AdsoonforW =4,5,...,W €N.

(12)

5. CONCLUSION

CICT approach combined to GA and GC unified mathematical language can offer an effective
and convenient ”Science 2.0” universal framework, by considering information not only on the
statistical manifold of model states but also on the combinatorial manifold of low-level discrete,
phased generators and empirical measures of noise sources, related to experimental high-level
overall perturbation. Traditional elementary arithmetic long division remainder sequences can
be interpreted as OECS for hyperbolic structures, as points on a discrete Riemannian manifold,
under HG metric, indistinguishable from traditional random noise sources by classical Shan-
non entropy, and current most advanced instrumentation approach. CICT defines an arbitrary-
scaling discrete Riemannian manifold uniquely, under HG metric, that, for arbitrary finite point
accuracy W going to infinity (exact solution theoretically), is isomorphic (even better homeo-
morphic) to traditional information geometry Riemannian manifold. In other words, HG can
describe a projective relativistic geometry directly hardwired into elementary arithmetic long
division remainder sequences, offering many competitive computational advantages over tradi-
tional Euclidean approach. Thanks to its intrinsic self-scaling properties, this system approach
can be applied at any system scale: from single quantum system application development to
full system governance strategic assessment policies and beyond. This approach allows you
even to develop more antifragile anticipatory learning system (ALS), for more reliable, safe
and secure medical application and system (cybersafety). Specifically, high reliability organi-
zation (HRO), mission critical project (MCP) system, very low technological risk (VLTR) and
crisis management (CM) system will be highly benefited mostly by these new techniques.
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ABSTRACT. Clifford Algebra or Geometric Algebra (GA) is a simple and intuitive way
to model geometric objects and their transformations. Operating in high-dimensional
vector spaces with significant computational costs, the practical use of GA requires,
however, dedicated software and/or hardware architectures to directly support Clifford
data types and operators. In this paper, a family of embedded coprocessors for the
native execution of GA operations is presented. The paper shows the evolution of the
coprocessor family focusing on the latest two architectures that offer direct hardware
support to up to five-dimensional Clifford operations. The proposed coprocessors
exploit hardware-oriented representations of GA elements and operators properly
conceived to obtain fast performing implementations. The coprocessor prototypes,
implemented on Field Programmable Gate Arrays (FPGA) development boards, show
significant speedups of about one order of magnitude with respect to the baseline
software library Gaigen running on a general-purpose processor. The paper also
presents an execution analysis of different GA-based applications, namely inverse
kinematics of a robot, optical motion capture, raytracing, and medical image
processing, showing good speedups with respect to the baseline general-purpose
implementation.

1. INTRODUCTION

Geometric Algebra (GA), also known as Clifford Algebra, is a powerful mathematical
tool that allows for a simple and intuitive representation of geometric objects and their
transformations [1]-[6]. The coordinate-free representation of GA is made possible by
using extended objects in high-dimensional vector spaces to represent three-dimensional
(3D) geometry. Four-dimensional (4D) and five-dimensional (5D) Clifford Algebras are
used to implement the most powerful models of 3D geometry, namely the homogeneous
model and the conformal model, respectively. Since the generic element of an n-
dimensional GA has 2" coordinates, the computational complexity increases quickly
when the algebra dimension increases, growing rapidly from 16 to 32 coefficients when
moving from 4D to 5D, and requiring more than a thousand multiply-adds between
coefficient combinations. These significant computational costs demand in turn
dedicated software and/or hardware architectures to directly support Clifford data types
and operators [7]-[19]. Software implementations of GA are conceived to execute
Clifford operations on general-purpose processors using dedicated software libraries,
such as Gaigen [7] and GluCat [8], packages for symbolic and numerical environments,
such as the Clifford [9] and GA [10] packages for Maple, the Gable [11] and Clifford
Multivector Toolbox [12] packages for Matlab, and the Grassmann algebra package
[13] for Mathematica, or stand-alone programs, such as CluCalc [14]. Since faster
performing solutions are needed, recently the attention has turned toward fully hardware
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implementations or hardware-software codesigns. A combined software-hardware
approach is proposed in [15]-[17] to accelerate GA-based algorithms. A pre-compiler,
named Gaalop (Geometric Algebra Algorithm Optimizer), compiles GA algorithms to
an intermediate representation converting GA operations in basic arithmetic operations
[15]. This intermediate representation can be further compiled to run on different
hardware platforms, such as Field Programmable Gate Arrays (FPGAs) or Graphics
Processing Units (GPUs) [16]-[17]. A specialized coprocessor implemented on an
Application Specific Integrated Circuit (ASIC) is presented in [18]. The coprocessor is
specifically designed for color edge detection applications and supports only the 3D GA
operations required in the target applications. The FPGA-based coprocessor prototype
presented in [19] executes product operations for algebras of dimension up to 8 and uses
24-bit integer numbers to represent scalar coefficients of Clifford operands.

In this paper, a family of embedded coprocessors for the native execution of GA
operations is presented, which we have been designing and implementing in the last few
years [22]-[27]. The paper shows the evolution of the coprocessor family based on
several factors, namely algebra dimension, supported operations, Clifford number
representation, execution flow (sequential or parallel, scalar or pipeline), datapath
width, data precision. First, the design space of computing architectures to natively
execute GA operations has been explored taking into account different architectural
parameters, such as number of multiply-add units and coefficient precision. Several
alternative architectures, as resulted from the design space exploration, have been
implemented and compared in terms of area cost, relative error, latencies, and speedup
[25]. The resulting family of coprocessors offers direct hardware support to up to 5D
GA operations. Different hardware-oriented representations of GA elements and
operations have been properly conceived to obtain fast performing implementations.
The representation based on the variable-length homogeneous elements, used for the
first two architectures of the family [22]-[23], has been then replaced with a fixed-size
representation based on quadruples in the latest coprocessors [24],[26],[27]. This novel
representation of algebra elements allows for important simplifications of algebraic
operations that in turn lead to a faster and more compact hardware architecture. The
latest presented coprocessing architecture exploits a simplified formulation of the
Conformal Geometric Algebra (CGA) operations, namely reflections, rotations,
translations, and dilations, which results in faster execution of such operations [27]. The
coprocessors have all been prototyped using development boards based on FPGA
devices. The latest two coprocessors have been implemented as complete embedded
Systems-on-Chip (SoCs) [26]-[27]. Experimental tests performed on the prototypes
have shown significant speedups with respect to the baseline software library Gaigen
running on a general-purpose processor [7]. The latest two coprocessors, named
CliffordALU5 and ConformalALU, respectively, show native support of all GA
operations in both 4D and 5D spaces with average speedups of about one order of
magnitude over the baseline software implementation. To evaluate the coprocessor
effectiveness in specific application domains, an application suite composed of different
GA-based algorithms, namely inverse kinematics of a robot, optical motion capture,
raytracing, and medical image processing, has been used as testbench, showing good
speedups with respect to the baseline general-purpose implementation.

The rest of the paper is organized as follows: Section 2 outlines the design space
exploration of GA-based computing architectures, while the resulting coprocessor
family is presented in Section 3. Section 4 presents experimental results, while
conclusions are contained in Section 5. A comprehensive introduction to the
fundamental concepts of GA can be found in [1]-[6].
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2. DESIGN SPACE EXPLORATION

The design space of hardware implementations that natively support GA operations has
been analyzed along several axes, namely, Clifford number representation
(homogeneous elements versus quadruples), execution flow (sequential versus parallel,
scalar versus pipeline), number of multiply-add units, coefficient precision, datapath
width, instruction word length. As described in Table 1, several alternative architectures
based on different sets of architectural parameters have been explored and different
design points have been implemented and prototyped. The resulting family of
coprocessing architectures is detailed in the following section. One of the design
parameters is related to the representation to be used for algebra elements. The standard
variable-length representation, based on homogeneous elements, used for the first two
architectures, has been replaced, in the latest coprocessors, with the fixed-size

representation based on quadruples. A description of this representation is provided in
Sections 3.3 and 3.4.

Table 1. Design space exploration

GA Clifford Execution | Parallelism N. of . Instruction
Coprocessor . number . 1 Precision word
operations . flow techniques | multipliers
representation length
S-CliffoSor 4D products, Homogeneous , 32-bit ISX32_b_lt
[22] sums, clements Sequential - - integers words =
differences 480 bits
4D products,
sums,
differences .
. . 15x32-bit
CliffoSor [23] | 3D rottions | Homogeneous | - p, ) . 24 S2DI s =
(Operations elements Integers .
. 480 bits
on bivectors
not
implemented)
4D products,
. sums, 16-bit 9x16-bit
Quad-[(zjil]f foSor differences, Quadruples Parallel Pipeline 16 floating words =
unary point 144 bits
operations
4D/5D
products, . .
CliffordALUS | sums, o 32-bit ) 9x32-bit
. Quadruples Parallel Pipeline 16 floating words =
[26] differences, . .
point 288 bits
unary
operations
5D
conformal
geometric . .
Conformal ALU operations L 3 2_b1t 16x32-bit
. 5D vectors Parallel Pipeline 5 floating words =
[27] (reflections, . .
. point 512 bits
rotations,
translations,
dilations)

3. COPROCESSOR FAMILY

In this section, the family of embedded coprocessors for the native support of GA
operations is presented. A brief description of the implemented architectures, whose
main features are listed in Table 1, is provided in the following subsections.
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3.1 S-CliffoSor

The first coprocessor to be implemented was S-CliffoSor (Sliced Clifford coprocesSor),
which offers direct hardware support to 4D Clifford operations between homogeneous
elements using 32-bit integers numbers to represent scalar coefficients of basis blades.
A homogeneous element or homogeneous multivector contains only blades of the same
grade. Each 4D Clifford multivector is an ordered tuple of 5 homogeneous elements m
= (s, v, b, t, p), as listed in Table 2. Each homogeneous element is composed of a
different number of blades, where each blade is a coefficient-basis blade pair. A 4-bit
mask is associated with each basis blade, where each bit is associated with a basis
vector e;, i=1,2,3,4, with e; the least significant bit. S-CliffoSor is based on a 32-bit
sequential ALU that executes addiction, subtraction, multiplication and logical
operations. Each 4D Clifford operation is decomposed into the proper sequence of these
basic operations whose execution is supervised step-by-step by a microprogrammed
control unit. The sequential architecture of the coprocessor leads to long per-operation
latencies, which can be however hid by replicating the single S-CliffoSor slice to
execute in parallel multiple independent Clifford operations.

Table 2. 4D GA homogeneous elements

Homogeneous element Blades
Scalar (s) ay
Vector (v) ae; a.e; ase; asey
Bivector (b) apeer ajsepes ajqse ey ajr3eres Ar4€2€84 | A34€3€4
Trivector (t) ajsejeres | apgeierey | ajgeiesey | aiesesey
Pseudoscalar (p) a1234€1€2€3€y
3.2 CliffoSor

As S-CliffoSor, the second developed architecture, namely CliffoSor (Clifford
coprocesSor), executes 4D Clifford operations between homogeneous elements using
32-bit integer numbers to represent scalar coefficients. While S-CliffoSor is based on a
sequential execution flow, CliffoSor uses parallel structures for the fastest execution of
Clifford operations. Three different functional units directly support 4D Clifford
products, 4D Clifford sums/differences and 3D Clifford rotations, respectively. To save
resources, the most complex operations on bivectors are not directly supported in
hardware, but they are handled in a higher-level Application Programming Interface
(APT) with multiple calls to the coprocessor. This design choice allowed us to use 24
parallel multipliers for Clifford products execution, rather than 36 parallel multipliers,
as needed to directly support in hardware bivector-bivector products.

3.3 Quad-CliffoSor

As CliffoSor, Quad-CliffoSor (Quadruple-based Clifford coprocesSor) is a parallel
architecture composed of three dedicated units for the execution of 4D Clifford
products, 4D Clifford sums/differences, and 4D Clifford unary operations, respectively.
While the previous architectures use the natural representation of GA elements based on
homogeneous elements, Quad-CliffoSor first introduces a novel representation based on
fixed-size elements, called quadruples. The variable size of homogeneous elements, as
described in Table 2, leads to some storage inefficiencies since a six-element vector is
used to implement each homogeneous multivector, but only the bivector uses all six
elements. Defining the four-size elements, or quadruples, listed in Table 3, the generic
4D multivector can be written as a tuple of 4 quadruples, m = (V, T, S, P). Each
quadruple is composed of four blades. Using quadruples, rather than homogeneous
elements, has two important advantages: first, fixed-size operands are better suited to a
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hardware implementation; second, using the 4 quadruples listed in Table 3 allows for
significant simplifications of product operations leading in turn to a faster and more
compact hardware architecture. As demonstrated in [24], the product of two quadruples
always gives as result the sum of two quadruples so that a single fixed format can be
used for both input data and output result. Furthermore, a simplified algorithm can be
used to execute product operations on quadruples. Any quadruple can be reduced to a
quadruple of type V by simple sign changing operations on its coefficients. The product
between any couple of quadruples can be therefore reduced to the product between two
quadruples of type V by simple sign changing and/or swapping operations. The latter
operation is the only operation to be implemented. The Quad-CliffoSor multiplier unit
was properly designed to permit the fastest execution of this operation. 16 parallel
multipliers are used to calculate the 16 products between the input quadruple
coefficients, while a three-stage pipeline allows a product operation result to be
provided on every clock cycle. Quad-CliffoSor is the first coprocessor of the family that
uses 16-bit floating point numbers to represent scalar coefficients of the basis blades.

Table 3. 4D GA quadruples

Quadruple Blades
A\ ae; ajre; ases aqsey
T A234€2€3€4 | A]34€1€3€4 | A]24€1€2€4 a;23€1€2€3
S aj4€1€4 a24€2€4 a34€3¢4 ap
P a23€2€3 a;3€es apee; a]234€1€2€3¢4

3.4 CliffordALUS

Clifford ALUS is the first coprocessor that natively supports GA operations in the 5D
space. The fixed-size representation based on quadruples, introduced in Quad-CliffoSor
for 4D Clifford elements, is extended in Clifford ALUS to 5D Clifford elements. The
eight quadruples of 5D GA are listed in Table 4.

Table 4. 5D GA quadruples

Quadruple Blades

A\ ae; are) aszes aqsey

T a234€2€364 a134€1€3€4 a124€1€2€4 aj23€1€€3

S aj4€1€4 a24€2€4 a34€3¢4 ap

P asseres aseies aeie; A1234€1€2€3€4
\A aseies ar5€2€5 a3s5€3€s a45€4€5

T A2345€2€3€4€5 | (A1345€1€3€4€5 | A1245€1€2€4€5 A1235€1€2€3€5
S’ A145€1€4€5 A245€2€4€5 A345€3€4€5 ases

P A235€2€3€5 a;35€1€3€5 aj25€1€2€5 A12345€1€2€3€4€5

As demonstrated in [26], the simplified algorithm used in Quad-CliffoSor for product
operations execution can be extended to 5D operations. Since 4D quadruples are a
subset of 5D quadruples, Clifford ALUS is a universal coprocessor that can directly
execute all 4D and 5D GA operations (geometric products, outer products, left and right
contractions, sums, differences, and unary operations) using quadruples as basic
elements of computation. The block diagram of the Clifford ALUS coprocessor (Figure
1(a)) shows three dedicated functional units for the execution of 4D/5D Clifford
products, 4D/5D Clifford sums/differences, and 4D/5D Clifford unary operations,
respectively. The simplified algorithm used for product operations, described in Section
3.3 for the 4D case, allows for a compact architecture of the Clifford multiplier unit, as
shown in Figure 1(b). This pipelined unit contains a 16x multiplier bank for the parallel
execution of the 16 multiplications required by a product operation between quadruples.
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Clifford ALUS is the first coprocessor of the family that uses 32-bit floating point
numbers to represent scalar coefficients of Clifford operands.

instruction Controller | enable_ aol a1l azl aal bol b1l bzl b3l
l 16x Multiplier Bank
enable_1| enable_2 |enable_3
Quadruple A Clifford multolier Quadrliple B opcode aibfl l l l l l l l l l l l l l l la:*b:’
° Iag/g — Zero/Sign
agB —
Quaanped Cifford adder <:1°:° NENNARENANENENN
Quadruple A . . Quadruple B Adder
Clifford unary operations KZ——— aob3+abol l l l a b+ a2b1l l l io
Result l} Swapping
ready Output select l l l l l l l l
(a) (b)

Figure 1. (a) Clifford ALUS block diagram; (b) Clifford multiplier unit block diagram

3.5 ConformalALU

The latest architecture, named ConformalALU, has been designed for the direct
hardware support of Conformal Geometric Algebra (CGA) or 5D Geometric Algebra
geometric operations, namely reflections, rotations, translations, and dilations. The
coprocessor exploits a simplified formulation of these operations aimed at a parallel
hardware implementation, which derives from two considerations. First, a conformal
geometric operation on a generic k-blade A, represented in CGA by the “sandwich”
geometric product, can be decomposed in operations on vectors according to the
following formula:

XA X =X(ana,n..na)X =Xa XAXa, Xn...AXa, X (1)

where X is the versor (rotor, translator, or dilator) that represents the conformal
transformation. Second, rather than using the standard “sandwich” geometric product of
CGA, each conformal geometric operation can be obtained by two non-commuting
successive reflections. The basic operation becomes therefore the reflection of a 5D
vector. In our implementation, each vector reflection is executed in turn using the
following simplified formula based on the classical dot product, rather than the standard
“sandwich” geometric product of CGA:

a'=a -a =a—2a”=a—2|aH|m=a—2(a-m)m (2)

where a is the vector to be reflected in a plane with unit-normal m, while a’ is the
reflected vector, as depicted in Figure 2.

Figure 2. Reflection of a vector a
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Requiring only one dot product and two subtractions between vectors, this new
formulation leads to a computational advantage and therefore a more compact and faster
hardware architecture [27]. The block diagram of the ConformalALU coprocessor is
depicted in Figure 3(a), while Figure 3(b) shows the block diagram of the Reflector unit.
Two cascade Reflector units are used to execute a whole instruction stream in a pipeline
fashion. As Clifford ALUS, ConformalALU uses 32-bit floating point numbers to
represent scalar coefficients.

m
ConformalALU a @
from CPU to CPU
Dot product
_— i R ———
control Control Unit control ’” ‘ .
signals signals @
Scalar vector
product
a a’ a’’ a ﬂ a@
m n
::r:‘;_tg Reflector Reflector C::l#:%“ ::> Subtractor
instructions results
stream stream a-—-da a
Subtractor
a’ U
(a) (b)

Figure 3. (a) ConformalALU block diagram; (b) Reflector unit block diagram

4. EXPERIMENTAL RESULTS

4.1 Coprocessor performance analysis

The designed coprocessors have all been prototyped using development boards based on
FPGA devices. Several experimental tests have been performed to evaluate the
coprocessor performance and compare it with the fast Gaigen software chosen as
baseline general-purpose implementation. Table 5 shows the performance analysis of
the coprocessor family in terms of clock frequency, area cost, latency per operation, and
speedup. CliffoSor shows a higher area cost as well as reduced latencies per operation
with respect to S-CliffoSor. These results depend on the different execution flow of the
two architectures, namely, sequential for S-CliffoSor and parallel for CliffoSor. The
reduced area cost, as well as the increased speedup, of Quad-CliffoSor in comparison
with CliffoSor, is an effect of the computational and architectural simplifications of the
quadruple-based representation. The higher area cost of Clifford ALUS when compared
with Quad-CliffoSor, is due to the higher precision (32-bit rather than 16-bit) of the
scalar coefficients. A scalar version and a pipelined version of the ConformalALU
coprocessor have been designed. As reported in Table 5, the pipelined Conformal ALU
consumes more resources, but allows for reduced latency and, consequently, increased
throughput. As a result of the design space exploration, Figure 4 presents a performance
analysis, in terms of area cost, relative error, and latency, of different alternative
architectures based on different sets of design parameters, such as the number of
multiply-add units and the coefficient precision. Figure 4(a) shows average relative
errors (with respect to the full-precision Gaigen implementation) and area costs of the
multiplier units of Quad-CliffoSor and Clifford ALUS, which use 16-bit and 32-bit
precision, respectively. The higher-precision architecture consumes over two times
more resources than the lower one, but a significant reduction of relative errors is
observed. Three different versions of the Clifford ALUS coprocessor, which use 4, 8,
and 16 parallel multipliers, respectively, for product operations execution are compared
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in Figure 4(b) in terms of area costs and latencies per operation. Increasing the number
of multipliers, the area cost increases, as well; however, a reduced latency in the product
operation execution between quadruples can be observed.

Table 5. Performance analysis of the coprocessor family

Clock Area (n. of FPGA Latency (clock Speedup over Gaigen
Coprocessor :
frequency slices) cycles) software
(average) (potential)
S-CliffoSor 45 MHz 2,295 (single slice) Products: 91 Products: 4x
Sums/Diff.: 78 Sums/Diff.: 3x
. (potential)
CliffoSor 50 MHz 8,444 SPL‘id/‘B’itff‘ 7 5 Products: 4x
HmsToTE: Sums/Diff.: 12x
. (potential)
Quad-CliffoSor | 50 MHz 3,201 SP;?S/”DC;;‘ 3 | Products: 23x
s : Sums/Diff.: 33x
(real)
. Products: 3 4D Products: 5x
Clifford ALUS 100 MHz 6,011 Sums/Diff.: 1 5D Products: 4x
Sums/Diff.: 2x
(real)
(average) Reflections: 56x
Conformal ALU 125 MHz 9 2’4807 ? (isceaﬂilg d) 315 (scalar) Rotations: 15x
’ PP 88 (pipelined) Translations: 46x
Dilations: 41x
0 7000

Clock cycles:
6000 . 3
-2
5000
Clock cycles:
4 Slices:2461 4

Clock cycles:

2000 8
- Slices:5865 1000
0

Precision 35 48

(a) (b)
Figure 4. (a) Average relative error and area cost (number of FPGA slices) versus precision for Quad-
CliffoSor and Clifford ALUS; (b) Area cost and latency per operation (clock cycles) versus number of
multipliers for Clifford ALUS.
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To evaluate the speedups over the reference Gaigen software, the same test operations
were executed using both the Gaigen library and the coprocessor. The first three
coprocessors were prototyped on FPGA boards connected via the PCI bus or the
Ethernet to the host computer. Only potential speedups in terms of clock cycles were
estimated since the coprocessor ran on the FPGA using a clock frequency slower than
the software running on the conventional host PC. Conversely, the latest two
coprocessors were implemented as complete Systems on Chip (SoCs) using FPGA
boards that integrate both a PowerPC general-purpose processor and the specialized
coprocessor on the same chip. A real speedup, in terms of wall-clock times, has been
therefore measured over the software library running on the PowerPC processor at the
same operating frequency as the coprocessor. Gaigen/Clifford ALU5 and
Gaigen/Conformal ALU comparisons are summarized in Figures 5(a) and 5(b),
respectively. As reported in Table 5, Clifford ALUS achieves effective average speedups
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of 5x for 4D Clifford products, 4x for 5D Clifford products, and 2x for 4D/5D Clifford
sums, while effective speedups achieved by ConformalALU are 56x for reflection
operations, 15x for rotations, 46x for translations, and 41x for dilations, respectively.

14000 o 1400000
“Gaigen “Gaigen
P - 1200000
“Clifford ALUS & Conformal ALU
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12000

8000 800000
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4000 400000

2000 u ] | 200000 J
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(a) (b)
Figure 5. (a) Gaigen/Clifford ALUS comparison; (b) Gaigen/ConformalALU comparison

Clock cycles
Clock cycles

4.2 Application suite

A suite of GA-based applications, including inverse kinematics of a robot, optical
motion capture, raytracing, and medical image processing, has been used as testbench to
evaluate the effectiveness of the coprocessor family in specific application domains. A
description of these applications can be found in [26], [27]. The testbench algorithms
have been executed using the latest two coprocessors, namely Clifford ALUS and
ConformalALU, and their performance has been compared with the baseline general-
purpose implementation based on the Gaigen software. Table 6 lists the observed
speedups for each application. Taking into account the mix of Clifford operations
required by each algorithm, the first three applications have been executed on the
Clifford ALUS coprocessor, while the ConformalALU coprocessor has been used to
accelerate medical image processing algorithms [20],[21]. The medical imaging
applications, accelerated by the ConformalALU, massively use CGA operations
(translations and rotations). The higher speedups of these applications are an effect of
the simplified formulation of CGA operations that allows for faster execution of these

operations.
Table 6. Observed speedups for the test applications

Application Inverse Motion Ravtracin Medical image Medical image
pp kinematics capture Y & segmentation registration
Observed 3.4x 3.8x 4.8x 46x 43x
speedup

5. CONCLUSIONS

A family of embedded coprocessors that offer direct hardware support to GA operations
has been presented in this paper. As overall result, the latest two coprocessors, namely
Clifford ALUS5 and ConformalALU, natively execute all 4D and 5D GA operations
showing speedups of about one order of magnitude relative to the baseline software
implementation Gaigen. It has been observed that the novel simplified formulation of
5D CGA operations, used in ConformalALU, allows for a further speedup of about 10x
with respect to the execution on the Clifford ALUS coprocessor. Future work will be
aimed therefore to integrate the two coprocessors Clifford ALUS and ConformalALU in
a single architecture to obtain a complete System-on-Chip that supports all basic
operations of up to 5D GA (products, sums, unary operations) and accelerates geometric
operations (reflections, rotations, translations, uniform scaling) of the 5D conformal
model using the fast dedicated unit Conformal ALU.
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The systems of many particles are of high interest in statistical mechanics, quantum physics
and celestial mechanics. Since Lagrange submitted his prize memoir Essai sur le Probleme
des Trois Corps in 1772, a lot of research on the three-body and the N-body problems has
been carried out, especially related to celestial mechanics [1]. However, the N-body problem is
not integrable in general as shown by Painlevé, and some techniques as Laplace’s perturbation
theory and Poincaré’s topologic methodes have been developed to approach solutions ([2], p.
400). On the other hand, the dynamics of N interacting bodies is not always stable and can
become chaotic even for the three-body system [3]. Some known solutions to the three-body
problem have been masterly explained by Hestenes [2] and let us recall his treatment here. The
dynamics of three bodies located at the points X7, X; and X3 under their gravitational attraction
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ABSTRACT. Leibniz’s theorem is the starting point to find a geometric solution to the so called
three-body problem. According to this solution, the weighted quadratic form of absolute Carte-
sian coordinates of three particles can be written as a separated quadratic form of the centre-
of-mass coordinate and relative coordinates. This geometric solution can be applied to colour
spaces (in particular to RGB space) in order to define a weighted lightness, not equal for all
colours, and two additional chroma coordinates, which adjusts the human eye cones sensitivity
to different colours better than the 1/3 weights of the LHS model. These new colour coordinates
can yield a faster algorithm for colour treatment and image data compression while preserv-
ing colour Grassmann’s laws. The same change from absolute to relative coordinates allows
us to write the weighted Laplacian operator with relative coordinates. Since the quantum non-
relativistic Hamiltonian of a system of N free particles is proportional to a weighted Laplacian
operator of their Cartesian coordinates, an exact expression for the kinetic Hamiltonian of three
particles using relative coordinates is deduced. An application to some elemental systems (such
as the electronic energy levels of helium atom and vibrational levels of carbon dioxide) will be
shown.

1. INTRODUCTION

can be written through the vector equations:

6]

where the gravitational constant has been absorbed into the definition of mass. Then, after the

. X1 —Xo X1 —X3 . X2 X3 X —Xi
Xi1=—m 3 —m3 3 Xo=—MmMm3———— —m|——3

X=X XX N-x[ T e-x
. X;—Xi X —X

—mj 3 — M) 3
‘X3 _Xl‘ ‘X3 —Xz‘

introduction of the relative coordinates:

2)

he gets the symmetrical form of the dynamical equations

S1=X3-X; S =X1—-X3 S3=X—Xj

1.

lAccording to Hestenes, the equations (3) were found by Broucke and Lass in 1973.
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2 THE GEOMETRIC SOLUTION TO THE THREE-BODY PROBLEM

S> . S3
—— +mG S3= —m—— +m3G

- S -
3  Si=-m—mtmG  S=-—m—
52| 55|

si°

where m = m| +my +m3 and G is:

S1 Ay S3

4) G=—F+—7+
i s [ssf

From this point he deduces the known solutions to the three-body problem.

My interest for the N-body problem came from Hylleraas’ treatment of the helium atom [5, 6],
which seems unsatisfactory and suggests that the three-body problem should be reviewed, at
least from a geometrical point of view. The question is which is the kinetic energy of a system
of N particles expressed with relative coordinates, and which is the corresponding Hamiltonian
operator of quantum mechanincs also expressed with relative coordinates. It will be shown that
the symmetry of the relative coordinates (2) outlined by Hestenes is the key to find a geometric
solution to the three-body problem.

2. ANTECEDENTS

Leibniz’s theorem [7] states that if P is any point in the plane and ABC a triangle whose centroid
is G then the following identity is fulfilled:

1
(5) PA? + PB*>+PC? = 3 (AB*+BC* + CA?) + 3PG*

An alternative and equivalent version of this theorem states that the geometric locus of the
points P such that PAZ + PB? + PC? = k? is a circle with centre G and radius:

k2  AB2+ BC2?+CA?
r=lCoPl= \/?_ 9

(6)

Apollonius’ circle theorem states that the locus of the points P whose distances to two fixed
points A and B are in a ratio k is a generalized circle with centre O and radius r:

A—k’B k|AB |
PA|=k|PB =
@) |PA[=k|PB| =  0="—5 -

r=|OP |=

For k = 1 the radius is infinite and the locus is the bisector of AB. Note that:
(8) | PA|=k | PB| &  PAP—KPPB*=0
which is a special case of the geometric outlining of the two-body problem: Given two points A

and B, which is the geometric locus of the points P such that a PA*> + b PB*> = k*? The solution
is known long time ago: The points P lie on a circle centred at the centre of mass G:

aA+bB k2 ab
9 G=——— GP |= — AB?
©) a+b | GP | \/a+b (a+b)?
This geometric solution is equivalent to writing:
b
(10) a PA2 4 b PB® = (a+b)PG* + %ABz
a

Defining the reduced mass of the binary system as & = a b/(a+ b) and denoting form =a+b
the total mass of the system, we have the usual notation in physiscs:

(11) a PA> +b PB> = m PG* + uAB?
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THE GEOMETRIC SOLUTION TO THE THREE-BODY PROBLEM 3

In ref. [11] we find the following Satz von Leibniz: If a+b+c=1,G=aA+bB+cCand X
is any point then:

(12) aXA%2+bXB*+cXC*—XG?*=aGA*+ b GB* + ¢ GC?

whose Korollar C is:

(13) abAB*>+b ¢ BC? + ¢ a CA* = p? — 0G?

where O is the circumcentre and p is the radius of the circumscribed circle. Finally, in [12] the
scalar function of Leibniz f(P) is defined as:

k
(14) f(P)=Y a; PA}
=1

and assuming that Y a; # O then there exists a fixed vector v such that, for any point P’ the
following equality is fulfilled:

(15) f(P)y=f(P)+2 PP -v

3. GEOMETRIC SOLUTION TO THE THREE-BODY PROBLEM

The classical three-body problem is formulated as follows: How can the kinetic energy of a
system of three particles be written with relative velocities? The kinetic energy is a separable
quadratic form of the velocities of each particle. Since the derivative with respect to the time
is a linear operator, this problem is equivalent to writing a A% 4+ b B* + ¢ C? with relative
coordinates, and concretely, to asking whether an expression like (10) can exist for three points
A, B and C of a triangle.

Theorem 3.1 (Apollonius’ lost theorem [8, 9]). Given a triangle ABC, the geometric locus of
the points P such that a PA> +b PB?> +c¢ PC? = k? is a circle centred at the centre of mass
G=aA+bB+cC.

Proof. Without loss of generality, it can be taken a+ b+ c = 1 in order to remove denominators.

After developing PG?> = [P — (a A+ b B+ ¢ C)])? by means of the scalar product and gathering
terms one arrives at [9]:

(16) PG?> =a PA> + b PB*+ ¢ PC*—abAB?>+bc BC>+c a CA?

whence | PG | is constant:

(17) |PG|= /2~ (ab AB? —b ¢ BC? —c a CA?)

and therefore P lies on a circle centred at G. ]

Remark 3.2. If a+ b+ ¢ = m instead of 1 then (16) becomes:

b b
(18) a PA>+b PB? +c PC2 = m PG* + °2 AB? + 25 BC? + “Lca?

m m m
Remark 3.3. 1f a, b and c are the masses of the particles centred at the points A, B and C, then m
is the mass of the system of three particles, G = (a A+b B+ ¢ C)/m is its centre of mass and P
can be taken as the origin of coordinates. This is just the geometric solution to the three-body

problem, a generalization of the solution to two-body problem (10).

Remark 3.4. The decomposition of the kinetic energy of a system of three particles is obtained
by derivation of (18) with respect to the time, and has an analogous expression.
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4 THE GEOMETRIC SOLUTION TO THE THREE-BODY PROBLEM

Remark 3.5. The equation (18) although deduced for the plane is also valide for every N-
dimensional Euclidean space because of the addition of squares.

4. APPLICATION TO COLOUR IMAGE PROCESSING

The sensitivity of the human eye to the light power follows a non-linear power law (gamma
law). When an electric voltage is applied to a CRT (cathodic ray tube) monitor, the light
power emitted by the electrons colliding with the screen phosphor also fits a non-linear law.
Fortunately, both fuctions are almost coincident, so that the applied voltage can be considered
proportional to the light sensitivity of human eye [13]. From now on I will refer to lightness
perceived by the human eye, whcih is quite proportional to applied voltages.

RGB (red, green, blue) space is the most frequently used to describe the colour space, although
there is a small part of colours perceived by the human eye falling out the RGB space. The main
question to deal with is the fact that the human eye has different sensitivity to the three colours,
from green the highest to blue the lowest. This was taken into account when defining the YUV
coordinates of the colour space used in the PAL TV format. The Y (luma) colour coordinate
was defined as:

(19) Y =wgr R+wg G+wg B RGB € [0,1)°

R=G=B=01isblack, R=G = B =1 is white, and grey colour is the addition of equal
amounts of the three fundamental colours RGB. Luma was defined with the weights wg =
0.299, wg = 0.587 and wp = 0.114 [14] fulfilling wg +wg +wp = 1, and it gives an approach
to the lightness of colours. On the other hand, the chrominance components U and V were
defined as:

B-Y
(20) U = Upax ~0.492(B—Y) Upax = 0.436
1-— wpB
R-Y
21) V=Vupax— ~0.877(B—Y) Vinax = 0.615
1-— WR
In the space Y PbPr the chromatic components are:
B-Y R-Y
(22) Pp=0.5 Pr=0.5
1— wB 1— WR

Its digital version YChCr uses RGB € [0,255]° and then Y € [16,235] and Cg, Cg € [16,240].
The JPEG image format enlarges these ranges to Y € [0,255] and Cg, Cy € [0,255].

From the solution to the three-body problem, I suggest using a new chrominance components
corresponding to relative coordinates defined in the following way:

(23) J=R-Gel-1,1] K=G-Be[-1,1] I=B—Re|[-1,1]

which are linear dependent since:

24) I+J+K=0

Of course two chrominance components are enough together with luma Y (19) for defining a
colour, and since green is the lightest colour of the three fundamental colours it seems most
suitable to take only J and K. Then I will call this colour system as YJK whose conversion
matrix from RGB is:

Y WR WG WB R
(25) J]l=1 -1 0 G
K 0o 1 -1 B
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THE GEOMETRIC SOLUTION TO THE THREE-BODY PROBLEM 5

If we consider the three fundamental colours as the coordinates of three masses lying on the
segment [0, 1], then luma Y is the centre of mass and 7, J and K are the relative coordinates,
the distances between colours. From the three-body solution (18), it seems natural to define a
colour metric (colour norm) HCH given by the scalar function of Leibniz [12]:

(26) e||? = [|[RGB||* = wg R? +wG G*+wp B2

Note that if R = G = B then the colour is grey and the colour norm is the grey scale. Therefore
(26) 1s the definition of grey level for every colour. This grey scale definition takes into account
the different lightness of the fundamental colours and is much better than the rough definition
of lightness as (R+ G+ B) /3 in the LHS model [15]. By means of (18) the norm HCH (the grey
level) can be obtained from the YJK coordinates as:

@7) HCH2 = HYJKH2 = Y2+WR wB 12+WR waG J2+WG wpg K2

Moreover, this norm defines clearly a distance between two colours ¢y and ¢, in the colour
space:

d(cy,c2) = HC2—61H = \/WR (Ry —R1)?+wg (Go — G1)2+wp (B, —By)?
(28)

==Y 2+wrwg (b —1))2+wrwg (Jo—J1)2+wg wg (By — By)?

Some properties of this distance are the following:

a) The distance from black to white is 1.

b) The distance from opposite fundamental colours are also 1. For instance yellow=(1,1,0)gcs
and blue=(0,0, 1)ggp then d(yellow, blue)=1. In the same way the distance from green to ma-
genta and from cyan to red is 1.

c) It fulfils the triangular inequality d(c1,c3) < d(c1,¢2) +d(ca,c3).

The chrominance components of the colour coordinates YJK could be plotted in a plane with
Cartesian coordinates J and K as done usually for the U and V coordinates. However, if we
wish to preserve the symmetry of the /, J and K chrominance components another graph plot
must be used. Let us consider three unitary vectors e;, e¢; and ex forming 120° between them
and defining the corresponding coordinate axes:

V3ol V3ol

29) e = —761 — Eez ey = 761 — 562 ex = e

Then the coordinates IJK of any point P(x e] +y e;) in this plane are its orthogonal projections
over the axes, which are obtained through the scalar product:

I=P-ej=(xe+y ez)-(—gel—%eg) = —‘/Tgx—%y
(30) J=P-ej= (.X€1 +y€2)'(§€1 _%ez) = éx—%y

K=P-ex = (xe;+yer)-ex=y

The components /JK so obtained fulfil (24). Figure 1 shows the coordinate plot. Since —1 <
1,J,K <1, all the possible values of 1, J and K lie on a hexagon. A point in the plane is obtained
from IJK as:

2
3D x€1+y€2:§(I€[+J€J+K€K)

The main advantages of the Y JK codification is the fact that the chrominance components J and
K are only obtained from a subtraction, which is a fast operation at the CPU level. It s also easy
to implement an electric circuit to encode and to decode the YJK signal. On the other hand,
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6 THE GEOMETRIC SOLUTION TO THE THREE-BODY PROBLEM

K

=5

Grey level

FIGURE 1. Left box: plot of I/K coordinates for all the possible values of
RGB calculated for luma Y = 0.5. Right box: grey level of the same colours
calculated according to (26).

the J and K signals can be applied directly as a voltage difference between adjacent pixels with
different colours in a screen, which reduces to 1/3 the arithmetic operations to decode video
signal. Since YJK have been defined as the linear combinations (25) of RGB, YJK also fulfil
Grassmann’s laws of additive colour mixtures [16].

5. APPLICATION TO CLASSICAL MECHANICS

The geometric solution to the three-body problem (18) has immediate application to the study
of the dynamics of a system of three particles because it implies the decomposition of the
kinetic energy. If we call the relative coordinates as:

(32) D=B—-A E=C-B F=A-C

then (18) can be written as:

b
33) aA24bB+cCt=mcr+ 22
m

D2+ bc E2 4 Capm

m m
whence the Lagrange function .Z of a system of three bodies interacting gravitationally and
having masses a, b and c is obtained:

m -2 ab -2 bc -2 ca ‘2 ab bc ca
PG 450D 42E 4 F +k

a
34) &=
34) 20 TP T B o R e TR

)+14D+E+m

k is the gravitational constant, and the holonomic constraint [17] D + E + F=0 has been added

by multiplication for a Lagrange multiplier vector A. The application of Lagrange equations
d¥/dq; =d(d</d 4;)/dt leads to the same equation as (3):
km m =

35 L L
(33) b==1ppP* 2

where now we see that Hestenes” G in (3) is in fact a Lagrange multiplier proportional to .
The linear dependence of relative coordinates can be always introduced in Lagrange equations
of motion via Lagrange multipliers. However, this does not mean that a system of N interacting
particles be integrable, which restricts the usefulness of the geometric solution to the N body
problem and its applicability to studying classical dynamics. Nevertheless, the panorama is
different in quantum mechanics.
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6. APPLICATION TO QUANTUM MECHANICS

The molecular spectra (IR 2, C'3-NMR and H-NMR?) seem to indicate that some kind of so-
lution for quantum systems of many particles should exist. For instance, each functional group
(such as carboxylic acid, ketone, amide, alcohol, anhydride, nitril, etc.) has a characteristic
absorbtion frequency in the IR spectra that is shifted in some degree by the other neighbour-
ing atoms and bonds of the molecule. Also the main NMR frequency of H or C'3is slightly
shifted by the neighbouring atoms of the molecule. When outlining Schrédinger’s equation for
a system of many particles, the potential energy is usually known as a function of relative co-
ordinates V (x;;). However, the kinetic energy operator is expressed with absolute coordinates
x;, and the exchange to relative coordinates x;; = x; —x; were not done before except for the
two-particle system or some special cases of more particles. Up to now, Jacobi coordinates &;:

Yoo miXe
(36) & =" —xy
Yy Mk

are likely the more consistent approach to write the Hamiltonian operator with relative coordi-
nates, because they fulfil [18]

N
37) Y S a =yt ) o

where:

11 1
(38) — =t M;=Y my
i Mjo omj+1 ’ kg’l

However, they do not follow the principle of symmetry between relative coordinates x;;. There-
fore, a general expression of the Hamiltonian expressed with relative coordinates was still
needed. In this way, let us see the following theorem:

Theorem 6.1 (Internal Laplacian theorem [10]). The Laplacian of three particles located at the
points A, B and C on a line with weights a, b and c fulfils the following identity for the change
from absolute to relative coordinates:

(39) A_182+182+182 1 09? Lath 9* L bt 82+a+c 92
 adA? bIB2 cdC? mdG?: ab dD®> bc JE? ac OF?

29 2098 20
adDJF  bIDIE  cIEJF

Proof. By taking into account (32) and G = (a A+ b B+ ¢ C)/m, and applying the properties
of partial derivatives. For more detailed steps see [10]. 0

Corollary 6.2. The internal three-dimensional Laplacian (without the centre-of-mass coordi-
nate) of three particles is:

a+b b+c_, a+c_, 2 2 2

40 At = \% \% V2 —ZVp-Vr—Vp-Vg—SVE-V
(40) ! abD+bcE+acFaDFbDEcEF
where D, E and F are their relative coordinates, and V p has its usual meaning:

0 0 0
41 Vp=e +e +e
(41) p=egote I 352

nfrared spectroscopy.
3Nuclear Magnetic Resonance spectroscopy of nuclei with non null spin.
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8 THE GEOMETRIC SOLUTION TO THE THREE-BODY PROBLEM

Proof. By addition of the three equations (39) obtained for each Cartesian coordinate. U

The kinetic energy operator 7' of a system of three particles is proportional to the weighted
Laplacian (39) [19]:

(42) T=-

R1R 12 1
2 \adA? boB? c¢dC?

On the other hand, the first term on the rAs of (39) accounts for the kinetic energy of the centre
of mass because:

. n? 92
43 Tyec= ————
( ) MC 2m8G2

and is excluded when calculating the internal energy levels of the molecules* because the ki-
netic energy of molecule translations is already taken into account in statistical mechanics via
the translational partition function [20]. Therefore, the internal kinetic energy operator is pro-
portional to the internal Laplacian (40):

R h
(44) Tine = _?Aint

6.1. Computation of the vibrational levels of CO,. Since D, E and F are linearly dependent,
we can choose without loss of generality a wave function y(D,E) only dependent on two
relative coordinates. In this case the internal Laplacian is:

1 %y 1 %y 2 J%y

(45) A WD E) =+ - 3E2 b aD OE

The first time when I applied this Laplacian was in order to calculate the vibrational levels
of carbon dioxide. The CO, molecule is linear and has a central carbon atom bonded to two
adjacent oxygen atoms. There are different stable isotopes of carbon (12C, 13C) and oxygen
(160, 170, 18O), but the very most frequent molecule (98,4 %) is 12¢160,. If the mass of
12C is taken as 12, then the mass of '°0 is 15.9949. 1 approached the C=0O bond vibration
as a harmonic oscillator, which is a well-known and solved quantum system. In this way,
Schrodinger’s equation of the CO, linear vibration is:

/1 92 1 9?2 2 92 kco x? kcox?
__( v 4 'V)+<mﬁw+(n%w:

46 =
(46) 2 \Hco dx3  Hco x5 mc 9x10x) 2 2

Ey

where x; and x; indicate the increases of the lengths of both CO bonds with respect to the
equilibrium length, k indicates the force constant (in the harmonic oscillator approach) of the
corresponding bond, and lco = mc mo/(mc + mgo) indicates the reduced mass of carbon and
oxygen atoms as used in physics. The former equation can be written as:

2%y N I’¥  2uco 9°y  pcokcori  Heokcoxs  2Elco
8x% 8x§ mc 8x1 aX2 hz h2 hz

(47)

Schrédinger’s equation of the harmonic oscillator approach for a single bond is:

9’y pcokcox*  2Epco

(48) 2 R

“4The centre-of-mass and internal Hamiltonians are separable because they depend on different coordinates. In
this case, the wave function is a product of two wavefunctions, one translational times another internal, and the
total energy is the translational plus the internal energies. The wave function of a free particle travelling in a box
is a well known and solved system, and the real problem is reduced to the computation of the internal energy.
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Introducing the vibrational frequency of the bond vco = ﬁ fng we have:
(49) P’y mudovéoX  2Efco
92 P V=""02

In order to compute the energy levels of the linear vibrations, a basis of 64 functions obtained
from the multiplication of pairs of 8 eigenstates of each CO bond fulfilling (49) was used. The
computation is automatically split into two separate computations, one for even states and the
other for odd states. The wave functions of even states are linear combinations of products of
pairs of harmonic oscillator eigenstates whose quantum number addition is even (for instance
2+0, 1+1, 0+2, 3+1, ...), and for odd states the addition of quantum numbers is odd (0+1, 1+0,
3+0, 2+1, ...). Both sets of eigenfunctions do not interact between them and the computation is
carried out separately for even and odd states. The results of these computations were included
in table 1.

Energy levels of '>C'°0,

Level Energy / hvco
Even states Odd states

0.9541105  1.608763¢
2.263418%  2.207676"
2.862330%# 2.918076%
3.461243% 3516985
3.572743%  4.115897¢
4.17164484  4.2279208
47705528 4-71+4809¢
4.8833105  4-826533"

NN R WD = O

TABLE 1. Energy levels of 12C'0, for the linear vibrational motion computed
by means of the approach of harmonic oscillator potential energy for each CO
bond. Energy given as a multiple of the vibrational frequency of the CO bond.
g and u indicate symmetric and antisymmetric states under interchange of both
oxygens. Since both !0 are bosons, the vibrational wave function must be
symmetric and u states cannot exist for 12C°0,.

As indicatedd above, the 98,4 % of carbon dioxide is >C!60,. Since both oxygens have spin
0 and are bosons, the wave function remains invariant under their exchange. This means that it
only has symmetric vibrational states (indicated as g from the German word gerade). The odd
states (indicated as u, ungerade) will only exist for minor amounts of other isotopic combina-
tions. On the other hand, according to Boltzman’s distribution law, the most populated energy
level at room temperature is the ground state with a factor exp(AE|.o/kpT) with respect to the
first excited state. Therefore, the visible bands in the IR (infrared) spectra are transitions from
the ground state. The most intense IR transitions take place when the electromagnetic radiation
generates a change in the electric dipole moment of the molecule [21, 29], although other tran-
sitions changing the magnetic dipole moment or the electric quadropole moment can also be IR
active but with much lower intensity. On the other hand, electric dipole transitions forbidden by
the selection rule of the harmonic oscillator (Av = %1) can appear due to anharmonicity5 [23].
Table 2 has been built from table 1 and indicates IR transitions, which includes those from

3The potential curve does not fit exactly to a quadratic function and Morse potential, which is not symmetric
with respect to the minimum, is usually applied to calculate the vibrational energy levels of diatomic molecules
[25]
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10 THE GEOMETRIC SOLUTION TO THE THREE-BODY PROBLEM

the ground state (absorption bands) and also IR emission bands of CO; laser. IR absorption
and emission bands are composed by a lot of single roto-vibrational transitions (caused by the
thermal population of the different rotational levels). The centres of these IR bands are the pure
vibrational frequencies table 1 and 2 refer to.

Infrared transitions of '2C'°0,

Transition Frequencies / Vco Band wavenumber / cm ™! Band strength
Calculated Experimental [28]
for Vco = 1794 cm™!
148 < 098 1.309308 23489 2349.1 [22, 26] 955900
298 < 098 1.908220 3423.3 3612.8 [22, 26] 10400
298 +— (0%8 1.963966 3523.4 3714.8 [22, 26] 15800
348 «— 0%8 2.507133 4497.8 4853.6 [26] 77.8
448 — (08 2.618633 4697.8 5099.7 [26] 109
498 < (0% 3.161787 5672.2 6076.0 [26] 0.523
568 <098 3.217534 5772.3 6227.9 [26] 4.61
5%8 < 0%8 3.273810 5873.2 6347.8 [26] 4.58
148 <248 0.598912 1074.5 961.34* [27]
148 <298 0.654658 1174.5 1064.12* [27]

*CO; laser emission bands.
TABLE 2. IR transitions for the linear vibrational motion of '2C'%0, by means
of the approach of harmonic oscillator potential energy for each bond. Calcu-
lated frequencies obtained from table 1.

The fundamental IR absorption band 6 of CO, is observed at 2349 cm~! [21] and a pair of
two minor bands are observed at 3613 and 3715 cm™! [22]. If we assign 2349 cm~! to the
148 « 0%¢ transition, we obtain as a parameter Vco = 1794 cm~!. This value is comparable to
the observed vibration frequencies of the C=0O bond in organic molecules ’ going from 1700 to
1850 cm™! [24]. Then, according to table 2, the transition 2¢¢ < 02 should have a frequency of
3423 cm™!, close to the experimental band at 3612.8 cm™! and the transition 2°:¢ < 0% should
have 3523,4 cm~! while the experimental value is 3714.8 cm~!. The discordance is easily
explained by anharmonicity, that is, the real potential curve is not exactly a quadratic function.
In spite of this, the wavenumber differences between both bands of 100.1 cm~ ! (calculated) and
102 cm™~! are very similar, which is a very good prediction. On the other hand, the parameter
Vco = 1794 cm™! allows us to calculate the relative population of the vibrational levels at
room temperature (298.15K): N(198)/N(0%¢) = 3.44-1073. Therefore, the main observed
bands are transitions from the ground state. On the other hand, the Raman transition at 1333
cm™!, usually attributed to the symmetric stretching of CO» has been misunderstood, since this
transition does not appear from the energy levels of linear vibrations. In fact, it is easy to see
that it corresponds to the transition 2 <— 0 of bending, because 667 x 2= 1334. The method
of analysis using the normal modes of vibration leads to uncertainties in the assignment of the
IR and Raman bands for molecules with as few atoms as CO, [30], and it should be reviewed

6 Another strong band is observed at 667 cm~! generated by bending the CO, molecule and is not considered
in these computations.

"The range of variation of the vibrational frequency (wavenumber) of the C=0 bond in organic molecules goes
from 1700 to 1850 cm™! depending on the concrete functional group: ketones 1705-1725 cm™!, aldehydes 1720-
1740 cm™!, carboxylic acides 1700-1725 cm~!, esters 1730-1750 cm ™!, anhydrides 1800-1850 cm~ !, amides
1630-1700 cm™!.
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under the scope of the ab initio computation of the vibrationel energy levels and wave functions
by means of the internal Hamiltonian here outlined.

6.2. Electronic energy levels of the helium atom. Since the helium atom is a system formed
by one nucleous and two electrons, the internal Laplacian (40) was also applied to check Hyller-
aas’ calculation of the electronic energy levels of the helium atom [5]. However, there is not
enough space here to explain it, and therefore it will be developed during the AGACSE 2015
conference.

7. CONCLUSIONS

The geometric solution to the three-body problem consists of a change from absolute coordi-
nates of weighted points to centre-of-mass and relative coordinates of the system. This solution
has applications to the colour space and to quantum systems, although applications to Newto-
nian dynamics of classical systems are limited by the linear dependence of relative coordinates.
According to this geometric solution, in the colour space a new set of chromatic coordinates /,
J, K are defined as subtraction of pairs of the RGB coordinates, which is a very simple arith-
metic operation with a low charge for a computer CPU. On the other hand, a new metric is
defined in the colour space giving different weights (according to the different sensitivity of
human eye) to the three fundamental colours. This metric allows us to define the norm of a
colour, which is identified with its grey level, and the distance between two colours. In order to
apply the geometric solution to the three-body problem to quantum systems, the change from
absolute to centre-of-mass and relative coordinates is introduced into the weighted Laplacian.
In this way, the internal Hamiltonian is obtained and applied to the computation of the vibra-
tional energy levels of CO,. The results are consistent with experimental data, but they differ
from the analysis based on the method of normal modes of vibration, which seems to have a
lot of contradictions. The study of the helium atom, another quantum system of three-particles,
will be shown during the AGACSE 2015 conference.
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ABSTRACT. The use of Geometric Algebra in engineering applications relies heavily on the
availability of software solutions for the new heterogeneous computing architectures. While
most of the Geometric Algebra tools are restricted to CPU focused programming languages,
the Geometric Algebra algorithms optimizer Gaalop supports also FPGA and GPU program-
ming languages. In this paper, we introduce the Gaalop precompiler for heterogeneous systems
(CPUs, GPUs, FPGAs, DSPs ...) based on the programming language C++ AMP (Accelerated
Massive Parallelism) of the HSA (Heterogeneous System Architecture) Foundation. As a proof-
of-concept we present a raytracing application. Starting from the situation 15 years ago with a
great gap between the low symbolic complexity on the one hand and the high numeric complex-
ity of coding in GA on the other hand, this paper shows, that, in the meantime, this gap could be
closed.

1. INTRODUCTION

In 2000, Gerald Sommer stated in the preface of his book [17]:

Today we have to accept a great gap between the low symbolic complexity on the one hand and
the high numeric complexity of coding in GA on the other hand. Because available computers
cannot even process complex numbers directly, we have to pay a high computational cost at
times, when using GA libraries, ... , full profit in real-time applications is only possible with
adequate processors.

What kind of processors do we need for Geometric Algebra 15 years later? Now we have a
world of parallel heterogenous systems and the question is how suitable they are for Geometric
Algebra.

| Precomputation (Compilation) of Geometric Algebra |

['sums of products | [ sums of products | |--.| [ sums of products

[--]

FIGURE 1. Precomputation of Geometric Algebra leads to parallel computa-
tions of sums of products

A good way of losing the high complexity of Geometric Algebra before going to the real com-
puting device is to precompute / precompile Geometric Algebra algorithms. What remains after
this process are only parallel computations of multivector coefficients each consisting of long
sums of products, which are again efficiently to be parallelized [10]. Although not designed for
computing with Geometric Algebra, fortunately, most of the current computing devices support
these kind of operations.

While our Gaalop precompiler [11] already supports CPUs, GPUs and FPGAs, in this paper,
we introduce a solution for an even broader range of heterogeneous computing architectures
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2 GEOMETRIC ALGEBRA COMPUTING FOR HETEROGENEOUS SYSTEMS

defined by the HSA Foundation (see Sect. 3). Since they are focusing on heterogeneous com-
puting with the programming language C++ AMP (see Sect. 4), we extended our Gaalop pre-
compiler accordingly (see Sect. 5), in order to support all the solutions of the 40+ companies
of this foundation. This Geometric Algebra solution is now part of the ecosystem of the HSA
Foundation. As a proof-of-concept we describe a raytracing application implemented by the
Gaalop precompiler for C++ AMP in Sect. 7.

2. COMPUTING WITH GEOMETRIC ALGEBRA

For many engineering applications runtime performance is a big issue. One method to attempt
to overcome the limitations of Geometric Algebra has been to look for dedicated hardware
architectures for the acceleration of Geometric Algebra algorithms. Integrated circuit technol-
ogy offers a means to achieve high performance with field-programmable gate arrays (FPGAs).
See, for instance, the solutions by Perwass et al. [15], Gentile et al.[8], Franchini et al. [7] and
Mishra and Wilson [13].

Another approach to overcoming the runtime limitations of Geometric Algebra has been through
optimized software solutions. Tools have been developed for high-performance implementa-
tions of Geometric Algebra algorithms such as the C++ software library generator Gaigen 2
from Daniel Fontijne and Leo Dorst of the University of Amsterdam [5], GMac from Ahmad
Hosney Awad Eid of Suez Canal University [4], the Versor library [2] from Pablo Colapinto,
the C++ expression template library Gaalet [16] from Florian Seybold of the University of
Stuttgart, and our Gaalop compiler [11]. In 2006 we, together with the Amsterdam group,
presented the first Geometric Algebra application that was faster than the standard implemen-
tation [12]. In the meantime, we have improved our Geometric Algebra Computing technology
further in order to support the newest programming languages and parallel computing architec-
tures, as described in the book [10]. We are already supporting GPU programming languages
such as CUDA and OpenCL or the FPGA programming language Verilog while most of the
other software solutions are restricted to CPU focused programming languages such as C++ or
C#. As a solution for the computing architecture of the HSA Foundation we present in Sect. 5
our Gaalop precompiler for C++ AMP.

3. HSA FOUNDATION

The HSA Foundation [6] is a not-for-profit industry standards body of 40+ companies, founded
by AMD, ARM, Imagination, Mediatek, Qualcomm, Samsung and Texas Instruments. It is
focused on making it dramatically easier to program heterogeneous computing devices for par-
allel computation utilizing CPUs, GPUs, DSPs, etc.

Heterogeneous computing is emerging as a requirement for power-efficient system design:
modern platforms no longer rely on a single general-purpose processor, but instead benefit from
dedicated processors/accelerators tailored for each task. Traditionally these specialized proces-
sors have been difficult to program due to separate memory spaces, kernel-driver-level inter-
faces, and specialized programming models. The Heterogeneous System Architecture (HSA)
aims to bridge this gap by providing a common system architecture and a basis for design-
ing higher-level programming models for all devices (including widely used system-on-chip
devices, such as tablets, smartphones, and other mobile devices).

4. C++ AMP

C++ AMP is an extension to C++ that enables the acceleration of C++ code on data-parallel
hardware (GPUs etc.). The first specification was published by Microsoft in August 2012 as an
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open specification. The first implementations were available in Visual Studio 2012 and Visual
Studio 2013.

For the goal of making it dramatically easier to program heterogeneous computing devices,
the HSA foundation released their C++ AMP (Accelerated Massive Parallelism) compiler for
Linux in Aug. 2014. C++ AMP version 1.2 enables C++ developers to accelerate applications
across a broad set of hardware and software configurations by supporting three outputs:

e Khronos Group OpenCL,
supporting AMD CPU/APU/GPU, Intel CPU/APU, NVIDIA GPU, Apple Mac OS X
and other OpenCL compliant platforms;

e Khronos Group SPIR,
supporting AMD CPU/APU/GPU, Intel CPU/APU and future SPIR compliant plat-
forms; and

e HSA Foundation HSAIL,
supporting AMD APU and future HSA compliant platforms.

As follows, we describe the main extensions of C++ AMP for accelerators:

parallel for_each describes a computation to be performed by an accelerator accross some
N-dimensional execution domain. It expects the number of threads and a lambda function
describing the functionality to be executed for each thread.

The ADT (abstract data type) array_view < 7,N > logically represents an N-dimensional
space of type T which resides either on the memory space of the host or of the accelerator, for
instance a 2-dimensional pixel array of colours as described in listing 1.

The ADT index < N > represents an N-dimensional point, for instance one point of a 2-
dimensional pixel array.

For details see [9].

5. THE GAALOP PRECOMPILER FOR C++ AMP

In order to simplify the use of Geometric Algebra in engineeering applications, we have devel-
oped Gaalop GPC, a precompiler, which integrates Geometric Algebra into standard program-
ming languages [10]. Figure 2 outlines the concept for the C++ AMP programming language.

' GA enhanced C++ AMP code |

GEOMETRIC ALGESRA ALGORITHMS OPTIMIZER

$

| Optimized C++ AMP code |

FIGURE 2. Gaalop Precompiler for C++ AMP.

With the Gaalop precompiler, we are able to enhance ordinary C++ AMP code with Geometric
Algebra code and automatically generate optimized C++ AMP code.
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TABLE 1. Gaalop precompiler functions for constructing and accessing multivectors

coeff = mv_getbladecoeff(mv,blade); | Get the coefficient of blade
blade of multivector mv.
array = mv_to_array(myv, blades ,...); | Write the blades blades ,...
of multivector mv to
array array. Example
array = mv_to_array
(mv,el,e2,e3,e0, einf );.
myv = mv_from_array(array,blades,..); | Construct multivector mv
from array array

A precompiler is an elegant way of extending the features of a programming language. For
Geometric Algebra Computing, it is of high interest to use both the power of high-performance
languages and the elegance of expression of a domain-specific language such as CLUCalc [14].
We have therefore embedded Geometric Algebra Computing code into C++ AMP code, and
compile it by utilizing the precompiler concept and the fast optimizations and code generation
features of Gaalop.

The Gaalop precompiler enhances C++ AMP programs by embedding

e Geometric Algebra code using multivectors;
e functionality to interact with multivectors.

It transforms these enhanced C++ AMP programs to optimized C++ AMP programs without
any explicit Geometric Algebra functionality. The embedding of Geometric Algebra code is
done based on pragmas with the following structure:

#pragma gpc begin
i&éort of multivectors
#ééagma clucalc begin
ééémetric Algebra code based on CLUCalc
#péééma clucalc end
ﬁ%éort of multivectors

#pragma gpc end

Each gpc (Gaalop precompiler) block includes a clucalc block with the Geometric Algebra
functionality. The functions to import/export multivectors are defined in Table 1. The purpose
of these functions is the transformation between multivectors and the C++ AMP language con-
cepts of float variables and arrays. mv_get_bladecoeff() is responsible for extracting a blade
coefficient from a multivector, whereas mv_to_array() constructs an array from a multivector
and mv_from_array() constructs a multivector from a C-like array.

6. CONFORMAL GEOMETRIC ALGEBRA

As shown in [3] for Gaigen and in [4] for GMAC, Conformal Geometric Algebra is very well
suitable to realize raytracing applications. This is because of its easy handling of objects such

as spheres, planes and lines. In this section we give a brief overview of Conformal Geometric
Algebra.
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TABLE 2. The two representations (IPNS and OPNS) of conformal geometric
entities. The IPNS and OPNS representations are dual to each other, which is
indicated by the asterisk symbol.

Entity IPNS representation  OPNS representation
Point P=x+ %xzeoo + e

Sphere S=P— %rzeoo S*=PIANP,ANP3\Py4
Plane T=n+des T*=PIANP,AP;Aew
Circle Z=81 NS Z"=P NP, \P3

Line L=mAm L*=P AP, N\ e
Point pair  Pp=S1ASHA\S;3 Pp*=P AP,

Conformal Geometric Algebra uses the three Euclidean basis vectors e, e,,e3 and two addi-
tional basis vectors e, e_ with positive and negative signatures, respectively, which means that
they square to +1 as usual (e) and to —1 (e_).

(1) e =1, et =—1, er-e_=0.
Another basis ey, €., with the geometric meaning

e ¢( represents the 3D origin,
® ¢, represents infinity,

can be defined with the relations

1
2) e0=5le-—es),  ew=e ey
Conformal Geometric Algebra provides a great variety of basic geometric entities to compute
with, namely points, spheres, planes, circles, lines, and point pairs, as listed in Table 2. These
entities have two algebraic representations: the IPNS (inner product null space) and the OPNS
(outer product null space). These representations are duals of each other (a superscript asterisk
denotes the dualization operator). In Table 2, x and n are in bold type to indicate that they
represent 3D entities obtained by linear combinations of the 3D basis vectors ey, e>, and e3:

(3) X =x1e1 +x2ep +x3e3.

The {S;} represent different spheres, and the {m;} represent different planes. In the OPNS
representation, the outer product ”A” indicates the construction of a geometric object with the
help of points {P;} that lie on it. A sphere, for instance, is defined by four points (P; A P, A
P3 A\ Py) on this sphere. In the IPNS representation, the meaning of the outer product is an
intersection of geometric entities. A circle, for instance, is defined by the intersection of two
spheres S1 A S>. Accordingly, the intersection of a line and a sphere can easily be expressed
with the help of the outer product of these two geometric entities (Fig. 3).

7. THE RAYTRACER PROOF-OF-CONCEPT

Here, we present our raytracer application as a proof-of-concept for our Gaalop precompiler for
C++ AMP. Raytracing is a technique for generating a 2D image by tracing the path of rays from
a camera through the pixels in an image plane and simulating the light effects at the intersection
with objects of a 3D scene (see Fig. 4).

Listing 1 describes the main routine of the raytracer. ImageView is defined based on the C++
AMP ADT array_view as a 2-dimensional pixel array (with extention HIGHT and WIDTH) of
colours. With parallel_for_each we describe the raytracing functionality for each pixel. In the
current version of the proof-of-concept project [1], we use simplified functionality without the
handling of shadow rays (raycasting).
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Intersection = R A S

Ray R

sphere S

FIGURE 3. Spheres and lines are basic entities of Geometric Algebra that one
can compute with. Operations such as the intersection of these objects are easily
expressed with the help of their outer product. In our raytracing application, for
instance, the result of the intersection of a ray and a sphere is another geometric
entity: the point pair consisting of the two points where the line intersects the
sphere. The sign of the square of the point pair indicates easily whether there is
a real intersection or not.

Image
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amera Light Source
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http://blog.codinghorror.com/real-time-raytracing/

FIGURE 4. Raytracing principle.

LI1STING 1. The Scene C++ AMP main routine
void Scene ::renderOnGPU(std :: vector <Colour>& imageData,

Camera camera, Light light) {
array_view <Colour , 2> imageView (HEIGHT, WIDTH, &imageData[0]);
array_view <Object, 1> allObjects(objectSize , objects);
int length = objectSize;

Color backgroundColor = background;
parallel_for_each (imageView. get_extent (), [=](index<2> 1idx)
restrict (amp) {

const auto y = idx[0]; // inverse order...
const auto x = idx[1];

// create a new ray ...

Ray ray = createNewRay(camera, X, y);

imageView|[idx] = rayCastAlgorithm (x, y, ray, allObjects , light,
length , backgroundColor);

1)
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Listing 2 describes the integration of some Geometric Algebra functionality into C++ AMP. It
is written in the Geometric Algebra language CLUCalc [14] and part of the above mentioned
raycasting functionality.

In the first gpc block, a sphere S is computed and assigned to the array sphere (see the second
row of Table 1) . The predefined function VecN3() computes the conformal point of the Eu-
clidean center point with the coordinates Cx, Cy, Cz (see the first row of Table 2). The sphere
S is computed with corresponding radius radius according to the second row of Table 2.

LISTING 2. Computations with sphere and ray

#pragma gpc begin
#pragma clucalc begin

7S = VecN3(Cx, Cy, Cz) — 0.5xradiusx*radiusx*einf;
#pragma clucalc end
sphere = mv_to_array (S, el, e2, e3, einf, e0);
#pragma gpc end
// Ray defined by origin (Ox, Oy, Oz) and direction (Lx, Ly, Lz)
#pragma gpc begin
#pragma clucalc begin

O = VecN3(Ox, Oy, Oz);

L = VecN3(Lx, Ly, Lz);

?7Ray = (O ©~ L © einf);
#pragma clucalc end

newRay.ray = mv_to_array (Ray, el"e2, el e3,

el “einf, e2”e3, e2"einf, e3 " einf);

#pragma gpc end

The second gpc block computes the ray Ray and assigns its relevant coefficients to an array.
The ray is computed based on the outer product of two of its points O and L and infinity (see
the fifth row of Table 2). Note that the ray has to be dualized (with a leading asterisk) since the
standard representation in Gaalop is the IPNS representation.

LISTING 3. Intersection of line and sphere with the Gaalop precompiler for
C++ AMP

#pragma clucalc begin

7PP = Ray "~ Sphere;

?7hasIntersection = PP.PP;

#pragma clucalc end

The listing 3 describes the integration of the Geometric Algebra functionality of the intersection
of a sphere and a line into C++ AMP as well as the computation of an intersection indicator
(see Figure 3).
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8. CONCLUSION

Starting from the situation 15 years ago with a great gap between the low symbolic complexity
on the one hand and the high numeric complexity of coding in GA on the other hand, this pa-
per shows, that, in the meantime, this gap could be closed. While the computing architectures
evolved from sequential to more and more parallel heterogeneous systems, the GA computing
technology evolved from GA libraries to a precomputing / precompiling technology cutting the
high complexity before going to the real computing device. This Geometric Algebra Comput-
ing technology based on Gaalop is now supporting a broad range of heterogenous systems.

| Geometric Algebra algorithm |

C++ AMP code

SAIL  [OpenCL| [SPIR |

AMD:' ARM Climegnation QI.IALCO.‘WW W

40+ HSA Foundation companies Intel, NVIDIA

FIGURE 5. Solutions of 40+ companies of the HSA foundation as well as of
Intel and NVIDIA can be supported by the Gaalop precompiler for C++ AMP.

The Gaalop precompiler for C++ AMP is able to support the solutions of 40+ companies of the
HSA foundation via the HSAIL output format of their C++ AMP compiler. Since this compiler
also supports OpenCL and SPIR, also Intel and NVIDIA solutions are supported.

| Geometric Algebra algorithm

| C++ AMP code |

SAIL | [OpenCL | [CUDA|

AMDZ1 ARM Climagnaten QUALCOM’ Pliisunad
J"'T#ﬁl‘ NTS
40+ HSA Foundation companies Intel,  NVIDIA

FIGURE 6. With the Gaalop precompilers for OpenCL and CUDA, Intel and
NVIDIA solutions can be supported directly.

Since Gaalop precompilers are also available for OpenCL and CUDA, there is also a direct way
to support Intel and NVIDIA according to Figure 6.
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ABSTRACT. The line geometric model of 3-D projective geometry has the nice property that
the Lie algebra si(4) of 3-D projective transformations is isomorphic to the bivector algebra
of CL(3,3), and line geometry is closely related to the classical screw theory for 3-D rigid-
body motions. The canonical homomorphism from SL(4) to Spin(3,3) is not satisfying because
it is not surjective, and the projective transformations of negative determinant do not induce
orthogonal transformations in the Pliicker coordinate space of lines.

After introducing the line geometric model to the Geometric Algebra community in AGACSE
2009, we picked up the topic again in 2014 to try to establish the mathematical completeness
by overcoming the unsatisfying facts of the Pliicker correspondence, meanwhile to loosen the
connection of line geometry with the Lie algebra of rigid-body motions, so that projective trans-
formations other than Euclidean ones can meet with screw theory and other mechanical theories
such as the virtual work principle, and new screw theories and virtual works may be established
by extending the Euclidean motions to projective motions.

In this paper, we make a brief introduction to our contributions in finishing the above goal of
research. A full version of the work is presented in [24].

Key words: Line Geometry; Screw Theory; Projective Geometry; Geometric Algebra; Lie
Algebra.

1. INTRODUCTION

The study of the geometry of lines in space was invented by Pliicker with his introduction of
the now so-called Pliicker coordinates of lines. It became an active research topic with the
establishment of screw theory by Balls [1], where the 6-D Pliicker coordinates of a line are
decomposed into a pair of 3-D vectors, called the screw form of the line, and the inner product
and cross product of vector algebra are extended to screw forms.

A pair of force and torque, called a wrench, are naturally represented by a pair of 3-D vectors,
and are geometrically interpreted as a line in space along which the force acts, together with a
line at infinity about which the torque acts. On the other hand, a pair of infinitesimal rotation and
translation, called an infinitesimal screw motion or rigid-body motion or twist, are represented
by the rotation axis and the translation vector, and are again naturally represented by a pair of
3-D vectors. Geometrically the translation is a special “rotation” about an axis that is at infinity,
so the translation vector represents a line at infinity. For a wrench (f,q) and an infinitesimal
screw motion (v,t), where f is the force direction multiplied with the magnitude of force, q is
the composed torque, v is the rotation axis direction multiplied with the angle of rotation, and t
is the moment of the screw motion, the virtual work of the wrench along the infinitesimal screw
motion is the “crossed” inner product

f
(1.1) (q)-(:):=f~t+q-v.

Partially supported by NSFC project 2011CB302404.
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2 ELEMENTS OF LINE GEOMETRY WITH GEOMETRIC ALGEBRA

The inner product (1.1) gives the 6-D space of wrenches a signature R, where a pure force has
zero inner product with itself, called a null vector. A positive (or negative) vector of R33 is one
having positive (or negative) inner product with itself. A positive vector is interpreted as a pure
force together with an extraneous torque so that the pair follow the right-hand rule, while for the
negative vector, the force and torque follow the left hand rule. The group SL(4) which acts in the
4-space of homogeneous coordinates of points, can be lifted to a group action in the 6-D space
of wrenches by acting upon the Pliicker coordinates of the lines representing the wrenches. The
image of the lift is SOy(3,3), the connected component of SO(3,3) containing the identity [3].
As PSL(4) = SL(4)/Z, is the group of orientation-preserving projective transformations, the
crossed inner product provides a 6-D orthogonal geometric model of wrenches to study 3-D
projective geometry of points.

The same inner product (1.1) also gives the 6-D space of twists the same signature R3. The
interpretation of a null vector of R in the setting of twists, is that it represents an infinitesimal
pure rotation or pure translation. A positive vector represents an infinitesimal screw motion
where the translation along the screw axis follow the right-hand rule with the orientation of the
rotation, while a negative vector represents a left-handed infinitesimal screw motion. The lift
of group SL(4) to SOy(3,3) then makes the space of infinitesimal rigid-body motions a 6-D
orthogonal geometric model to study the orientation-preserving projective geometry of points.

The bold-faced words clearly reveal a conflict. The group of rigid-body motions is 6-D, while
the group SL(4) is 15-D; the former is much smaller. What sense does it make to investigate
projective transformations via rigid-body motions? Furthermore, the inner product (1.1) is
between the space of wrenches and the space of twists, indicating that the two spaces need to
be identified, yet they have to be different spaces by nature. Understanding (1.1) as a pairing
between a linear space and its dual space does not make much difference, as the same inner
product exists in either space.

Line geometry and screw theory are closely related to each other. In history, the screw forms
were first used by Clifford in the name of biquaternions, also known as dual quaternions, in
describing 3-D Euclidean transformations. Later on, Balls [1], Study [29], Blaschke[4] estab-
lished screw theory and developed dual vector algebra out of Clifford’s dual quaternions, also
known as screw algebra. Nowadays line geometry together with screw theory have important
applications in mechanism analysis, robotics, computer vision and computational geometry [5],
(2], [27], [8], [25], [26], [7].

For two vectors (x1,y1)” € R¥3 and (x2,y2)7 € R33, where x;,y; € R, their cross product,
also called dual vector product, is defined as follows:

X1 X2 X1 X X»
1.2 X = .
(12) <Y1) <Y2) (X1XY2+Y1><X2>

This product is covariant under the subgroup of SO((3,3) that is the lift of the group of rigid-
body motions SE(3), but not so under the whole group SOy(3,3). In other words, it is not a
valid operator in 3-D projective geometrys; it is valid only for Euclidean geometry.

In dual vector algebra, the dual inner product of two vectors of R3 is defined to be a dual
number. A dual number is of the form A + ey where A, € R, €2 =0 and € commutes with
everything. This numbers system is a ring instead of a field, and the corresponding polynomials
and modules are drastically different from the usual ones. The dual inner product is invariant
under the lift of SE(3) to SOy(3,3), so it is suitable for Euclidean geometry only.

In [21], it was pointed out that dual vector algebra and dual quaternions can be realized in
the conformal geometric algebra CL(4,1), and can be extended to arbitrary dimensions. The
Euclidean geometric parts of the wrench model and the twist model have no conflict, and their
identification is natural. The twist model should not have anything beyond Euclidean geometry,
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otherwise it would be absurd. The wrench model, or more generally the model of lines in space,
deserves further attention.

For invariant computing in projective geometry, the traditional algebraic tool is Grassmann-
Cayley algebra and bracket algebra [22]. The study of projective geometry by Clifford algebra
was initiated by Hestenes and Ziegler [15], and Stolfi [28]. The representation of projective
transformations by spinors was initiated by Doran et al. [9], where a homomorphism of the
Lie algebra gl(n) into so(n,n) was proposed, making it possible to construct projective trans-
formations by elements of Pin(n,n). Following this line, Goldman and Mann [13] discovered
for many 3-D projective transformations their bivector generators in CL(4,4). Considering that
the dimension of so(4,4) is C3 = 28, while the dimension of s/(4) is 15, the embedding space
of s/(4) seems too high [11].

A classical result [3] states that the group SL(4), which acts upon the 4-space of homogeneous
coordinates of points, is in fact isomorphic to the group Sping(3,3), the connect component of
Spin(3,3) containing the identity, and the isomorphism is realized via the Pliicker coordinates
of lines and the adjoint action of Spin(3,3) upon R33. This canonical isomorphism indicates
the possibility of using the wrench model, the model of spatial lines, to study projective geom-
etry with CL(3,3).

In AGACSE 2009, Li and Zhang [23] proposed a new model of 3-D projective geometry by
taking the null vectors of R3 as algebraic generators, and defining points and planes as the two
connected components of the set of null 3-spaces of R respectively. Whenever an element
of Sping(3,3) acts upon R33, it induces a projective transformation via the outermorphism
of the action upon the null 3-vectors representing 3-D points and planes. This approach was
later followed by Klawitter [19], who proposed an explicit expression of the spinor inducing
a projective transformation in 4 X 4 matrix form, and recently by Dorst [11], who constructed
bivector generators for many 3-D projective transformations.

When viewed from the homogeneous coordinates model R* of 3-D projective geometry, the
R3:3 model seems to have too many defects. The map from SL(4) to SO(3,3) is not surjective,
nor injective. The projective transformations of negative determinant cannot be lifted to O(3,3),
and conversely, the elements of O(3,3) with negative determinant do not correspond to any
projective transformation, but represent projective polarities where points are all mapped to
planes. In the R model, while lines are represented by vectors, the 3-D points and planes are
represented by null 3-vectors, whose embedding vector space has dimension Cg = 20. To make
things worse, the mapping from R* to the null 3-vectors is quadratic, and defining the subset of
null 3-vectors in the 20-D vector space they span is difficult.

From the mathematical viewpoint, establishing the space R* of homogeneous coordinates from
the 6-space R*3 spanned by lines requires rigorous mathematical argument. It is the con-
verse procedure of Pliicker’s construction of line coordinates from point coordinates. The
well-definedness of the points and planes, and the covariance of the construction under suit-
able transformations of R33 need to be established. The benefits of using the null 3-vectors
instead of the linear space R* to represent points need to be discovered. The groups SOy(3,3)
and Spiny(3,3) are too small to cover the whole group of all 3-D projective transformations
and polarities, and finding suitable covering groups to provide spin representations for all 3-D
projective transformations and polarities is indispensable.

So compared with other models of Geometric Algebra for classical geometries [14], [16], [20],
[10], [22], [17], [12], [18], the line geometric model of 3-D projective geometry is much less
developed. When every problem raised above is solved, then for the group of 3-D Euclidean
transformations, a highly mature subject of study in Geometric Algebra, a one-to-one corre-
spondence among the representations in the line geometric model and in other models need to
be set up.
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As mentioned before, the screw algebra is valid only for Euclidean motions, and the corre-
sponding group SE(3) is only a subgroup of SL(4). When SE(3) is replaced by another 6-D
Lie subgroup of SL(4), then the Lie algebra se(3) of Euclidean motions is replaced by another
6-D Lie subalgebra of si/(4). Correspondingly, we can introduce new screw forms for the 6-D
Lie subalgebra, together with the new “virtual work™ of a wrench, which is still a vector of R3:3,
along an infinitesimal “projective motion” represented by a screw form of the Lie subalgebra.
The 6-D Lie subalgebra has its own Lie bracket, so the corresponding screw forms should have
a different cross product. The new “virtual work™ should be related to the new cross product,
or even be completely determined by it.

We can go one step further by decomposing the 15-D algebra s/(4) into the direct sum of five
3-D vector spaces, so that instead of using only pairs of 3-D vectors as in classical screw theory
for the screw forms of se(3), we can use 5-tuples of 3-D vectors to represent screw forms of
sl(4), and develop a “super-screw theory”, equipped with “super-cross product” and “super-
virtual work”™.

For the purpose of developing a mathematically rigorous model out of the peculiar, unfamiliar
and seemingly ineffective line geometric model, for more effectively describing and manipu-
lating 3-D projective transformations with Geometric Algebra, and with the ambition to further
extend screw theory to projective geometry, we picked up the research subject again in 2014,
and after one-year’s hard work, we are confident to announce that from the algebraic viewpoint,
this model is sufficiently mature now.

A lot of exciting results have been obtained, and some highlights will be introduced in this
paper. The full version [24] of 62 pages can be downloaded from arXiv. The main contributions
are the following:

1. Rigorous establishment of the R33 model for 3-D projective geometry.

While in the classical model of projective line geometry only SL(4) has spin representation,
and all the spinors are in Sping(3,3), a rather unsatisfying limitation, the new model com-
pletely overcomes the limitation by providing pin group representations for all 3-D projective
transformations and polarities, thus enlarging the transformation group four times.

The group of linear regularities of R3? is defined by
(1.3) RL(3,3) :={B € GL(3,3)|BTJB = +J},

where J is the matrix form of the metric of R33. Only when we computed the group acting upon
the null 3-vectors induced by RL(3,3) did we find the complete version of the line geometric
model. The group RL(3,3) double covers the whole group of 3-D projective transformations
and polarities in this manner, and the group Pin*”(3,3) quadruple-covers the latter, hence it can
be used to construct versors for all kinds of 3-D projective transformations and polarities.

The well-definedness of points and planes in the R*3 model, and the covariance of the repre-
sentations are established. Some nice properties of reflections in R are found, together with
the classification of 3-D projective transformations induced by two reflections in R33.

2. Construction of spinors in factored form inducing 3-D reflections and rigid-body motions,
and discovery of the relation between the cross product of the screw forms of se(3) and the
virtual work.

For 3-D reflections and rigid-body motions, the spinors inducing them in Pin*?(3,3) in factored
form are discovered. Since the bivector Lie algebra of CL(3,3) is isomorphic to s/(4), any
element of se(3) has a bivector form, and the cross product of the bivectors equals the cross
product of their screw forms as vectors of R33. On the other hand, a wrench is only a vector
of R33. To make pairing with a bivector, a vector needs to be first upgraded to a bivector
of A%(R3?) by making inner product (tensor contraction) with a trivector. We show that this
trivector is exactly the one complementary to the trivector defining the cross product of the
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screw forms of se(3), and the latter trivector is exactly the lift of the quadratic form of R3%!,
This correspondence shows the intrinsic the connection between the virtual work and the cross
product of se(3). The connection between the wrench interpretation and the twist interpretation
of the line geometric model is now clarified.

3. Extension of the cross product and virtual work of the screw forms of se(3) to other 6-D Lie
subalgebras of s/(4).

For many 6-D Lie subalgebras of s/(4), we have developed the corresponding screw forms
together with the cross product and virtual work that are completely determined by the Lie
bracket of the subalgebra. In particular, for so(K) where K is a quadratic form of R* with rank
> 3, we have established the corresponding screw forms, cross products and virtual works, and
discovered a striking fact: the trivectors for constructing new cross products and new virtual
works are exactly the lifts of the quadratic form K by the Pliicker correspondence and the dual
Pliicker correspondence to the trivector space. This result demonstrates that there is no intrinsic
connection between the se(3)-interpretation and the wrench interpretation of line geometry.

2. R3:3 MODEL OF 3-D PROJECTIVE GEOMETRY

The null 3-spaces of R*3 is composed of two connected components, the intersection dimen-
sion of every couple of elements in the same connected component is odd, while the intersection
dimension of two elements, one from each component, is even. This property makes it possible
to separate 3-D points and planes to be defined via R3 without resorting to the now missing
base space R*.

The unitary regularity group UR(4) is the union of SL(4),SL~(4),SD(4),SD~ (4) acting on R*,
where elements of SL™(4),SD~ (4) have determinant —1, and elements of the other two have
determinant 1. The set SD(4),SD ™ (4) is composed of linear maps from the space of projective
points R* to the space of projective planes (R*)*.

The Pliicker transform is defined by A € GL(4) — A’A € GL(3,3); the dual Pliicker transform
is defined by A € GD(4) — V?A € GL(3,3). For example, A’A(XAY) = (AX) A (AY) for
X,Y € R* and XAY € R*3. The Pliicker transform and dual Pliicker transform are a cou-
pled group homomorphism double-covering RL((3,3), a subgroup of RL(3,3) composed of 4
connected components. The group RL(3,3) itself is composed of 8 connected components.

Pin(3,3) has 4 connected components:

(1) Spiny(3,3): Clifford product of even number of positive vectors, and even number of
negative vectors; e.g., £1 are included.

(2) Spiny(3,3): Clifford product of odd number of positive vectors, and odd number of
negative vectors; e.g., +I3 3 are included, where I3 3 is a unit pseudoscalar.

(3) Spiny (3,3): Clifford product of even number of positive vectors, and odd number of
negative vectors; e.g., negative vectors are included.

(4) Spin; (3,3): Clifford product of odd number of positive vectors, and even number of
negative vectors; e.g., positive vectors are included.

Fix an orthonormal basis e, e;,e;,e3 of R*. The induced basis of R>3 = AZ(RA') is
(2.4 Ei=ey, Ey=epn, E3=ep, Ej =€y, E)=e3, E; =ep.

Denote E;; = E; AE;. The following is the symplectic form [6] of the Witt decomposition
RS’?’ = E123 @E1/2/3/:

(25) K2 = Ell’ —|—E22/ —}—E33/.

It depends only on the Witt decomposition, although the definition requires a fixed basis.
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The linear transformation defined by Kj is denoted by .7: for any X € R¥3, 7X =X-K; €
R332,

 also has an action upon Pin(3,3): forU=X;X,---X,, U7 = (TX)(TXp) - (TX,).

Define an associative product with the commutativity .7 o U = U7 0.7. Then Pin’P(3,3) =
Pin(3,3) U .7 Pin(3,3) is a group. Define a new adjoint action of the group upon R*3. Then
Pin*?(3,3) double covers RL(3,3), and quadruple-covers PR(3) = UR(4)/Z,. The kernel of
the latter covering homomorphism is {£1,+I33}.

Let .Z be the map from R* to the set of null 3-vectors, and let .#” be the map from (R*)* to
the set of null 3-vectors. They provide null 3-vector representations of 3-D points and planes.
Are they covariant in that the following diagrams commute?

Pliicker
X € R* —— Y; € A’(R*?)
| |
A €GL(4) | |B=A%A
3 )
Pliicker?
AX c R4 — (A’B)Y;3 € A3(R3?)

The answer is: no, but after slight modification by multiplying the bottom Pliicker transform
with det(A), the diagram commutes. Similarly, the following diagram commutes, where GD(4)
is the group of general linear polarities of R*:

Pliicker

XcRY  ——————— — Y; € A3(R33)
| |
A €GD(4) | |B=V2A
) \J
det(A) dual Pliicker
AXc (RYH* S — (A’B)Y3 € A3(R33)

The maps .% and .#" are thus covariant, and points and planes are well-defined. By this
covariance, we get explicit formulas for the matrix form of the induced group element of PR(3)
from a given element of RL(3,3) being also in matrix form.

3. SPINORS GENERATING SE(3) AND THE CORRESPONDING SCREW FORMS

X . . .
A screw form of a vector of R refers to ( y ) . This notion makes possible the use of vector

algebra in CL(3,3), and the representation of two different inner products by the same symbol
within the same expression.

. . . . X .
For example, the reflection with respect to an invertible vector U = ( y ) € R*3 induces the

following projective transformation in R*:
0 —yT
3.6 .
(.6) < y xxIsxs )
This simple formula has the following application.

X . ) ) )
For any vector U = ( y ) € R332 not necessarily invertible, as a bivector of AZ(R“), it defines

a linear transformation in R*: X € R* — U-X € R*, where the inner product is in CL(R?).
The matrix form of this transformation is exactly the inverse-transpose of (3.6). In other words,
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when the vector is invertible, then the matrix form of the transformation is the 4 x 4 matrix of

the reflection with respect to U/ = ( i ) c R33.

Hence, given a versor U =V,V,_;---Vy in factored form, its adjoint action upon R3:3 induces
a projective transformation in R*, and the transformation is:

37) XeRY > Vy- (Vij';l : (Vzk_2~(~-~(Vi/;~X)m))), for r=2k,

X eR*— Vi - (Voo (- (V7 -X)-++)), for r=2k—1.
Consider the composition of two reflections in R33. Except for 3-D rotations of angle 7, no
other rigid-body motion is generated by two reflections in R3. The rotation of angle 7 about
the axis at point y € R? in direction x € R, where y is chosen so that x -y = 0, is generated by
two reflections induced by the following vectors sequentially (from right to left):

X X
(3.8) (x—l—yxx)’ (—x+y><x)'

For a general rigid-body motion, we construct its explicit spinor generator in both factored form
and in exponential form. For example, let v{, V> be unit vectors of R3. The rotation of R? in
the v, v plane with angle 2/(vy,v,) is generated by four reflections in R33 with respect to the
following vectors sequentially (from right to left):

The first two vectors induce the rotation of angle 7 in the plane normal to v, at the origin, and
the last two vectors induce the rotation of angle 7 in the plane normal to v; at the origin. It is a
geometric fact that the two rotations leads to the rotation of angle 2/(vy,v;) in the v;v; plane.

As another example, let X,y be nonzero vectors of R? satisfying x -y = 0. The translation of R>
by vector x is generated by four reflections induced by the following vectors in R33:

X X X X
(3.10) (X_y+X;y>, <X+X;<2y>, (x+y)’ (x)

The spinor has another factored form:

y y
(3.11) xxy |, xxy |, ( y ) (y)

We see that the factored forms of a spinor are not unique. In contrast, the bivector generator
is unique. The spinor generating the screw motion of angle of rotation 8 and screw driving
distance d about the axis in unit direction v € R at point ¢ € R?, is the exponential of bivector

(3.12) %{(E>E’—E<E’)(9v) —E'E'(6cxv+dv)}.

In summary, any Euclidean transformation is found a generating spinor in factored form and in
exponential form. In particular, a 3-D reflection has both a screw form of se(3) and a spinor
in factored form in coset .7 Spin(3,3). For the reflection with respect to plane (n,d), where d
is the signed distance from the plane to the origin and n is the unit normal direction from the
origin to the plane, the generator in .7 Spin(3,3) is

Vo A0 Vi Vi
(3.13) y(—\’z—dvl )(Vz—dvl )<_V1 )(Vl ),

201
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where vy, v,,n form an orthonormal basis of R3. When d = 0, the above spinor can be simpli-
fied to

A(2)()

The screw form of the bivector generator of the above spinor is (7n,2dn)” € R33.

The cross product of R is induced by the following trivector of CL(3,3):

(3.15) C3=F(e1)+ 7 (e2) + 7 (e3),
such that for any X, Y € R>3,
(3.16) XxY=—-(XANY)-Cs,

and X - C3 is the element of se(3) whose screw form is X.
By the following image of C3 under A _#:
(3.17) D; = 7"(ef) + 7" (e3) + F"(e3),

a vector X € R33 is mapped to X-Ds € 50(3,0, 1), the Lie algebra preserving the metric R>%:!.
By

o (2 e((£)p) e

the virtual work of a wrench (f,q)7 along a twist (v,u)7 is realized by trivector D3 up to the

relative weight of the work done by the torque part q over the work done by the force part f.

4. PROJECTIVE SCREW FORMS AND CORRESPONDING CROSS PRODUCTS

As the cross product in classical screw theory only reflects the Lie bracket of se(3), and the
virtual work of a wrench along an element of se(3) is in fact determined by the Lie bracket of
se(3), we can further extend screw theory to other 6-D Lie subalgebras of s/(4), define the cross
product of the corresponding screw forms, and the associative virtual work done by a wrench
along an infinitesimal projective motion, with the hope that for non-Newtonian mechanics this
may make sense.

The following is a typical class of 6-D Lie subalgebras of s/(4). Let K be a quadratic form of
rank > 3 defined on R*. Denote SO(K) = {A € SL(4)|ATKA = K}. Its Lie algebra so(K) is
a 6-D subalgebra of s/(4). Up to isomorphism there are only the following 5 kinds:

so(4), so(3,1), so(3,0,1), so(2,2), so(2,1,1).

1. so(4):
The cross product of two screw forms of this algebra is
X X) X1 XX2+Y1 XY2
4.19 X = ,
(4-19) (Y1> SO(4)(Y2> (XlXY2+Y1><X2>
where x;,y; € R3. The trivector of CL(3,3) realizing this cross product is
(4.20) ﬁ(eo)—i—ﬁ(e])—l—ﬁ(ez)—i—ﬁ(eg).
It corresponds to the matrix diag(1,1,1,1) of the quadratic form preserved by SO(4).
2.50(3,1):
The cross product of two screw forms of this algebra is
X1 X2 X1 XX2—Y1 XY2
4.21 X = .
“2D <Y1) SO(M)(Yz) (X1><Y2+Y1><X2)
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The trivector realizing the cross product is

(4.22) —7 (eg) + F(e1)+ F(e2) + .7 (e3).
It corresponds to the matrix diag(—1,1,1,1) of the quadratic form preserved by SO(3,1).
3. 50(3,0,1):
The cross product of two screw forms of this algebra is
42 (0 ) o000 (32) = (oot )
The trivector realizing the cross product is
(4.24) F(e])+.7(er) +-F(e3).
It corresponds to the matrix diag(0, 1,1,1) of the quadratic form preserved by SO(3,0,1).
4. 50(2,2):
The cross product of two screw forms of this algebra is
X X X| X1X X

(4.25) ( Yi ) %50(22) ( yi ) B ( Y11><21X22j)§21><2};21 ) ’
where for x = (x1,x2,x3)7 and y = (y1,y2,y3)7 of R?,

X2y3 = X3)2 —(x2y3 — x3y2)
(4.26) xx1y:= | —(wyi—xy3) |, xXxoy:=| —(x3yr+xy3)

—(x1y2 —x2)1) X1y2 +x2)1

The trivector realizing the cross product is

(4.27) —F(eg) — F(e1)+.F(er) + .7 (e3).
It corresponds to the matrix diag(—1,—1,1,1) of the quadratic form preserved by SO(2,2).
5.s50(2,1,1):

The cross product of two screw forms of this algebra is

X1 X2 X1 X1X2
4.28 = .
(4:28) < yi ) " s0(2,11) < y2 ) ( Y1 X2X2 —Y¥2 X2X] )

The trivector realizing the cross product is
(4.29) —F(e1)+ F(er) +.7 (e3).
It corresponds to the matrix diag(0,—1,1,1) of the quadratic form preserved by SO(2,1,1).

We have also studied other 6-D Lie subalgebras, for example the Lie algebra of the 6-D general
non-uniform scaling group, and the 6-D subgroups of the 7-D invariant group of R%2, and
established the corresponding cross products.

Any element of s/(4) is of the form

_ T
(430) < tr{Msx3) N, X3),

where p,t € R?. The matrix N33 can be decomposed into the diagonal part (a 3-vector denoted
by d), the upper diagonal part (another 3-vector denoted by u), and the lower diagonal part (yet
another 3-vector denoted by 1). The whole Lie algebra s/(4) is then naturally decomposed into
the direct sum of five 3-D Lie subalgebras, which are the five 3-spaces represented by the five
vectors p, t,d,u,l respectively. A bivector of CL(3,3) has similar decomposition, leading to the
super-screw form of an infinitesimal 3-D projective transformation: a 5-tuple of 3-D vectors.
The corresponding “super-cross product” can be set up.
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5. CONCLUSION

This introductory paper summarizes our recent work [24] on developing a solid mathematical
foundation for the line geometric model of 3-D projective geometry, and extending the screw
theory from Euclidean motions to projective motions.

The connection between the CL(3,3) model of 3-D projective geometry and the CL(4, 1) model
of 3-D conformal geometry is investigated in another paper. In that paper, the roles of the
conformal point at infinity and the projective points at infinity relative to the Euclidean affine
3-space are clarified when both occur in the same model; the projective geometry of 3-D non-
Euclidean geometry together with its various realizations in Euclidean space are investigated in
the conformal model via different pin-hole cameras.
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Rational surfaces have become standard for industrial Computer-aided Design (e.g. Bézier or
NURBS surfaces). Unfortunately, this class is not closed under the operation of offsetting. This
problem motivated the concept of a Pythagorean-normal (PN) surface, defined as a rational
surface admitting rational offsets. Peternell and Pottmann [1] started to study PN surfaces
using Laguerre geometry. For example, they proved that duality defines a 1-1 correspondence
between non-developable PN-surfaces in the Euclidean space R and rational surfaces in the
Blaschke cylinder, which is a particular model for Laguerre geometry. Other models, like the
cyclographic model (CM) or the isotropic model (IM), also appeared useful for manipulation
with PN-surfaces (see a survey [2] and a recent paper [3]).

Our idea is to place all these models into one space, which is the classical Lie sphere geometry
space P’ defined by pseudo-euclidean vector space R*? with signature (++++——). Then
we consider the geometric algebra CI(4,2) generated by R*2. This allows us to define all
the different models of Laguerre geometry and the maps between them in terms of closed
formulas in the algebra CI(4,2). Therefore, our approach provides a unifying formalism to
deal with PN-surfaces. Here are some details of the construction. Consider the orthonormal
basis {eq,...,es} of R*?, where ¢;-¢; = 1,i=1,...,4,¢;-¢; = —1, i = 5,6, and two auxiliary
VECtors e. = e4+e5, eg = (—e4 +e5) /2. Then define the Lie quadric A = {X ¢ R*? | X -X =0},
and several subsets in R*? corresponding to Laguerre geometry models (cyclographic model,
Blaschke cylinder, and isotropic model): CM = (e1, e, e3,¢e¢) = R>!, BC = AN {xg =0}, IM =
(e1,e2,ew). Oriented spheres in R? are represented by vectors in CM: the first three coordinates
are for the center and the last one is for the radius. Oriented planes nx; +nyx; +n3x3+d =0
in R3 with normals n = nje; + nyey +nzes, |n| = 1, are represented by vectors n -+ dew + eg €
BC. The key point of the proposed construction is the location of /M, which has the expected
signature (++0). BC and IM are related by the stereographic projection BC — IM that simply
forgets coordinates x3 and xg, and its inverse, defined by the quadratic map

1
IM — BC, z|—>z+§zzeg+el, ep=—e3+es, er=(e3+eg)/2.
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The usage of geometric product not only simplifies many proofs, but also provides a deeper in-

sight into differential geometry. We are going to present new connections between Geometric
Analysis and Geometric Calculus:

Let M be an m-dimensional smooth submanifold of R™"* and let a and b be vector fields
on M(. The normal part of the directional derivative of b in the direction a can be expressed

b
Y ((a-0))" = a=S,
cf. [HS, 4-3.16] where S stands for the shape operator on M . Furthermore we have

a-=8, = b—S,, sothat .—=S(.) isa symmetric bilinear form on T, with values in
the normal space N,(, namely the second fundamental form on W[, cf. [Sms prop 2.2.2].

In [HS] “the spur” of a manifold is defined to be the vector J, —S,. For an orthonormal basis
{m1,..., T} of T,M we arrive at .
H=0,-8=) 7,-S,

j=1
hence J is the trace of the second fundamental form and, by definition, the mean curvature

vector on I, cf. [Sms p. 68], [DHT p. 301]. This insight allows us to approach the theory of
Minimal Surfaces from the Geometric Calculus point of view:

Recall the definition [DHT sec 4.3 def 9]: W is called minimal, iff H =0 on M.

Moreover, we obtain [HS, 4-4.6]: H=—-(0%)%T! (#)

where 0 = 0, denotes the vector derivative on #( and T = T(x) is the unit pseudoscalar in
the Geometric Algebra generated from the tangent space 7,0J( . For a good reason we call the
map x — T(z) the Gauss map of (. As a function F on ( is called left monogenic, iff OF = 0,
an interpretation of (1) yields the

Theorem. JJ( is minimal, iff the Gauss map is monogenic.

In our talk we will discuss the meaning of this theorem, consider the second derivatives of T
and other operators on #(, i.e. further examples will be given.

Many of these relations are missing in the classical literature on Differential Geometry since
an intrinsic view is usually preferred.
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In classical invariant theory, the transformation group is the general linear group, and the invari-
ants are polynomials of the brackets that are the determinants of the homogeneous coordinates
of points. The brackets are algebraically dependent, and their algebraic relations are called
syzygies. All the syzygies form an ideal, and modulo this ideal any invariant has a unique form
called straight form. The procedure leading to the straight form is called straightening, and
is made by a classical algorithm of Young early in the 20th century. In a straight form, any
monomial is up to coefficient the product of several brackets, say k brackets each of length n,
such that when the bracket factors are piled up in a column and the whole monic monomial
forms a tableau, then the entries of each row is increasing, and the entries of each column is
non-decreasing.

When the transformation group is restricted to the orthogonal group, then the invariants are
polynomials of the brackets and the inner products of decomposable extensors, called blades by
Hestenes. A straightening algorithm exists and is a special case of the normalization in Hodge
algebra. In geometric application, however, the generators of the ring of invariants each have
limited length, as when the surrounding vector space has dimension n, then each bracket has
length at most n, and each inner product has length at most 2z (it is also called a bideterminant
when the length reaches 2n). The limitation of the lengths of the basic invariants often makes
the symbolic manipulation of orthogonal invariants complicated.

By the “universal ungrading” technique in Clifford algebra, when the orthogonal group acts in
3D space, any orthogonal invariants can be changed into a polynomial where each term is the
scalar part of the Clifford product of vector variables, called the Clifford bracket of the vectors.
In other words, in a Clifford bracket polynomial, the length of a bracket is not limited, and can
grow infinitely with the increase of the degree of the polynomial. The benefit is that within
each Clifford bracket, the associativity of the Clifford product among the vectors brings nice
symmetries, making the manipulation of such “long” brackets much easier than that of the short
classical ones.

For 3D Clifford bracket algebra, one needs to compute a Grobner basis of the syzygies among
the Clifford brackets for arbitrary number of vector variables, and use it to normalize (also
called straighten) Clifford bracket polynomials. Once every Clifford bracket polynomial is in
normal form, then the leading term of the product of two Clifford bracket polynomials in normal
form needs to be found, so that the division of one Clifford bracket polynomial by another can
be carried out in the classical manner of top reduction of the dividend by only one divisor,
instead of computing again a Grobner basis and then making top reduction to the dividend by
the whole set of computed Grobner basis.

In the last two years, we have successfully solved the above two fundamental problems on 3D
Clifford bracket algebra. In the procedure of solving the second problem, we have also solved
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2 FUNDAMENTALS OF 3D CLIFFORD BRACKET ALGEBRA

the same problem in classical bracket algebra, i.e., making invariant division of one bracket
polynomial by another by top reduction of the dividend with respect to only one divisor. This
talk addresses our progress in solving the two problems.
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Geometric algebra (GA) offers an alternative approach to understanding the fields of the
Standard Model (SM) of high energy particle physics. This presentation examines a geometric
view of electron and neutrino fields in the electroweak sector of the SM. These fields are
related by the rotations of the SU(2) Lie group. Because our perceived space is three-
dimensional and because the Lie algebra of SU(2) is isomorphic to that of the SO(3) Lie
group, it is common within geometric algebra to address electroweak symmetry in terms of the
generators of the Lie algebra of SO(3). However, Hestenes and Sobczyk [1] point out that the
natural representation of the special unitary group SU(n) in GA is in terms of generators that
are compound (non-blade) bivectors in Gz, the GA of 2n-dimensional Euclidean space.
Therefore, a natural approach to electroweak theory mathematically is to work with SU(2)
generators as compound bivectors in Ga. This approach leads one to consider electroweak
fields as multivector fields in G4 that are solutions of the Dirac equation in four spatial
dimensions and one time dimension. This presentation will examine such multivector fields,
offer a new point of view on chiral projection of gz fields, and consider what spatial boundary
conditions might lead to our perceived 3-D physical space.
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ABSTRACT. The phase concept is used in many applications of image processing such as edge,
line and symmetry detection, image analysis and recently to show small motion or color changes.
Eulerian motion magnification is a linear magnification based on the Laplace and Euler model
of fluids and allows to show small color changes and motions invisible to the naked eye . How-
ever, noise power is amplified linearly with the amplification factor using in the Eulerian mag-
nification. Manipulating the local phase variations (related to the Fourier shift theorem) with
a Riesz-pyramid decomposition is possible to amplify the small motions, with two important
advantages: achieves larger magnifications, and has better noise performance .

Exists three different types of phases, the global or Fourier phase, instantaneous phase and
local phase. In this work, we use local phase concept based on the quaternions or bivector ele-
ments of 43 ¢ ¢ in order to exhibit small and imperceptible motions in a 3D sequence acquisition
manipulating the local phase coefficients of a hypercomplex multiscale pyramid . The main
contributions of this work is, i) a new motion magnification method based on a unique compact
supported window infinitely differentiable, the atomic function up(x) . ii) We apply our the
phase and Eulerian magnification to 3D motion sequence magnification using a RGBD sensor
(Kinect) that has not been reported so far. iii) We compare, the Riesz Pyramids method and
the linear magnification in terms of the Signal to noise ratio (SNR), we found that the phase
magnifications has better response than the linear method.

1. INTRODUCTION

The phase concept is commonly used in many applications areas of signal processing such as
telecommunications, image processing, geophysics, etc. [11, 9, 13, 14]. Exists three different
types of phases, the global or Fourier phase, the instantaneous phase and the local phase. In
this work, we use local phase concept based on the quaternions or bivector elements of ¥3 ¢ ¢ in
order to exhibit small motions in a image sequence. Manipulating the local phase coefficients
of a hypercomplex pyramid of an image sequence is an effective way to amplify small motions
[1,4,5].

In this work, we propose a new technique in order to amplify 3D motion by using a an atomic
function and the atomic function up(x) for filter space and short-term and long-term tempo-
ral variation (1D signals) on image sequences. There are three main reasons to use the atomic
functions. The atomic function have a compact support in space domain, the n—order derivative
is easy to compute and we can compute the Hilbert and the Riesz transform by using the first
derivative [2]. Additionally we use a 3D sensor in order to do a 3D magnification. According
to our results the phase magnification has better response than the linear method. The magnifi-
cation technique has a lot of applications and actually can be use as a visual microphone using
speed cameras.

2. QUATERNION ALGEBRA 7

T. Biilow and M. Felsberg [6, 7], claims that, the complex algebra is not enough to formulate
the local phase n—dimentional generalization of the analytic signal. Therefore, the quaternion

This work has been supported by SNI-CONACYT..
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algebra 7 or % in the Geometric algebra GA is used to compute the local phase. An
element of .77 consists of one real element adding three imaginary elements (i, j, k) i.e.

2.1) q=a+bi+cj+dk,

where a,b,c,d € % and i, j obey the relations i = j> = —1,ij = k. The real part of ¢ is noted by
Re(q) = a and the pure part is Pu(q) = bi+cj+dk [8]. 7 is geometrically inspired, due to the
quaternions may be used to represent rotations (as bivector) in %> and %* and translations (as
vector) in %> [8]. GA allows to distinguish naturally objects and operations [7]. The imaginary
components can be described in terms of the basis of %3 space, i — €32, ] — €13,k — ez1 [7].

3. PHASE INFORMATION

The Fourier phase is the most well known phase and denotes the angular phase of a signal
in frequency domain [6]. When another kind of information is needed such as the structural
information of the signal the instantaneous or the local phase is used [6]. The instantaneous
phases is used to know what is the phase at a certain position of the real signal [?, 6, 7]. In
order to compute the instantaneous phase we first construct the analytic signal. For 1D signals,
the instantaneous phase computation is based on the analytic signal and the Hilbert transform
(fulf(x)] = f(x) * %). The main idea of the Hilbert transform is to create a signal related with
the original with a phase shift of 7/2 [6, 7] and is given by

3.1 fa(f () = f(x) +ifulf(0)],
(32) Fa(F(x) = |Ale”,
where |A| = \/f(x)2+ fu(x)? and 6 = arctan(%). The analytic signal permit us to ex-

tract the magnitude and instantaneous phase independently in the space domain. However, the
Hilbert transform is a global transform and the instantaneous phase can be changed for others
parts of the signal affecting the phase values in the region of interest [6, 7]. To solve this prob-
lem, it is common to use a window (or a bandpass filter) in convolution of the Hilbert transform
[6, 7] in order to compute a local phase approximation.

3.1. Local Phase . The local phase means the computation of the phase restricted to a certain
part or bandwidth of the real signal. The local phase is useful to separate the signal structure
into impulses (even) and jumps (odd) [11, 9]. Additionally, the phase information allows us
to use the invariant or equivariant properties of the signal [7]. For instance, it has been shown
that the phase has an invariant response to image brightness and it can also be invariant to the
rotations [7, 9].

In 2D signals, the Hilbert transform is not enough to compute the magnitude and phase inde-
pendently in any direction [7, 6]. Then, the quaternionic analytic signal and the monogenic
signal have been proposed [6, 7, 11].

3.2. Monogenic Signal. The monogenic signal, was proposed by M. Felsberg and G. Sommer,
and generalize the analytic signal to n—D. The monogenic signal for 2D signals is represented

by [7]

X
K ——.
27|x?

(3.3) Sn(x) = f(x) + (i, /) fr(x) = f(x) + (i, /) f(x)
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The magnitude of the signal is computed by | fp(X)| = \/ (i, j) fg + f(x)?. Since the monogenic

signal is constructed from the original signal and its Riesz transform, we can express the local
phase ¢ and the local orientation 0 as [7]

(3.4) o — araan(l(l J)fR( 9;f( )\)
- (12

4. ATOMIC FUNCTIONS

Definition 4.1. The atomic functions (AF) are compactly supported, infinitely differentiable
solutions of differential functional equations with a shifted argument [15], i.e.,

M
4.1) Lf(x):lZc(k)f(ax—b(k)),\a]>1,b,c,7L EN,
k=1

n n—1 . . . . . .
where L = % +ay % + ...+ ay is a linear differential operator with constant coefficients.

Among other AF's, the atomic function up(x) is the simplest and, at the same time, the most
useful primitive function to generate other AF's [15].

Definition 4.2. The atomic function up(x) is generated by infinite convolutions of rectangular
impulses. The function up(x) has the following representation in terms of the Fourier transform
[15, 10]:

_ sin( v2 SV
(4.2) up(x) = 7 //? ok dv,
4. — . ivx
(4.3) 271:/ up(v)e'™dv.

Some properties of the AF that we take advantage of have been reported in [10, 15]; these
properties include the following attributes:

e The up(x) function is a compactly supported function in the space domain. Therefore,
it can obtain good local characteristics.

e Since derivatives of any order can be represented in terms of shifts, any derivative can
be represented as an operator, and the n-order derivatives are defined by

(4.4) dWup(x) =20+ /225kup (2" 42" + 1 —2k),
k=1

where Oy = — &, 61 = O, Oy = 1. For example the first order derivative dup(x)

4.5) dup(x) = 2up(2x+1)—2up(2x—1).

e The AFs are infinitely differentiable (C*). As a result, the AF's and their Fourier trans-
forms are rapidly decreasing functions. Therefore, their Fourier transforms decrease on
the real axis faster than any power function.

e The AF windows were compared with classic ones by means of parameters such as
the equivalent noise bandwidth, the 50% overlapping region correlation, the parasitic
modulation amplitude, the maximum conversion losses (in decibels), the maximum
side-lobe level (in decibels), the asymptotic decay rate of the side lobes (in decibels per
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octave), the window width at the six-decibel level, the coherent gain, etc. All atomic
windows exceed classic ones in terms of the asymptotic decay rate.

A radial atomic function was mentioned in [2] as up(1/x? + y?) (see Fig 1). However in [2], the
function Plop(x,y) was defined as a radial infinite differentiable function with compact support
(see Fig 1), 1.e.

u?+ vt
(4.6) Plop(v,v) H Z 32k h+l EDIE

and is solution of the following functional-differentail equation [?]

@7 V2Plop(x,y) = A /a Plop3(x=1).3(y — &)lds-+ uPlop(3x.3y),

where szA:elg—;—i—ezg—yzz, E2+E}=4/9, u=—4mA/3and A =3’ /4T

FIGURE 1. Left: up(v/'vZ+ v2); right: Plop(v,v).

4.1. Riesz Transform Using Plop(x,y). According to [16] the Hilbert transform of wavelets
are wavelets. Actually the Hilbert transform acts as an involution on the space of solutions
of linear differential-functional equations solutions such as atomic functions [16]. The Riesz
transform can be seen as a generalized Hilbert transform to n—dimensions [7]. A Riesz trans-
form based on an atomic function was presented at [2] using this equation.

@) fils) = 1)+ (VPlop(x) < sign(s)log(x) ).

5. QUATERNION ATOMIC-RIESZ MULTIRESOLUTION

Atomic-Riesz pyramid coefficients consists of a real part and two imaginary parts with two
Riesz transforms based on equation 4.8.

(5.1) Mm(x) = f(x) +ifr, (X) + jfr, (X)

and this information is used to determine the local amplitude A = || fum]||, local phase ¢ and local
orientation 6.

(5.2) fm=Acos(¢)+iAsin(¢)cos(0)+ jAsin(¢)sin(60)
(5.3) log M _ iAg cos(6) + jA¢sin(6)
||l

Equation 5.3 uses a normalized quaternion,and is invariant to whether the local phase and ori-
entation are ¢ and 0 or the antipode —¢ and 6 + 7.
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6. LINEAR MAGNIFICATION

Eulerian video magnification, introduced by Wu et al [1, 4, 5]. is able to amplify small motions
in videos without explicitly computing optical flow. In their work, the temporal brightness
changes in frame sub-bands are amplified to amplify motions. Because this method amplifies
brightness changes, the total amplification is limited and the noise power is amplified linearly
with the amplification factor. Some characteristics of this approach are: each pixel are pro-
cessed independently, each pixel has as a time series (spatio-temporal window) and amplify
particular temporal frequencies [4]. Figure 2 shows the Euler magnification approach on one
image by increasing temporal variation it is possible to increase spatial motion or color.

FIGURE 2. Magnification using a spate temporal window.

A simple case of a 1D signal let I(x,7) denote the image intensity at position x and time ¢. We
can express the observed intensities with respect to a displacement as a function §(¢),

6.1) I(x,t) = f(x+ (1))

I(x,0) = f(x). The goal of motion magnification is to synthesize the signal I(x,7) to I(x,t)ym
(motion amplification)

(6.2) I(x,t)yy = f(x+(1+a)o(z))

where « 1s the amplification factor and using a Taylor series expansion about x

9f(x)

(63) 0t = £06)+ (14 0)8(1) 2

In order to do the implementation 6.3 Wadhwa et al [4] use a Laplace pyramid in addition to
temporal filter. The main problem of linear magnification is that noise power is amplified.

7. PHASE M AGNIFICATION

Several papers has demonstrated that the local phase using bandpass filtered can be used for
local structure description and motion estimation, shown the link between phase and motion
and could be exploited in an Eulerian manner for motion magnification [9, 12]. Additionally,
the main problem of linear magnification were solved by amplifying temporal phase variations
using a complex steerable pyramid [1]. In this work we propose use our Riesz transform defi-
nition based on atomic functions.

The local phase computation has an ambiguous sign, therefore a filter a sequence of unit quater-
nions can be used. According to [4, 5] the local orientation 0 is supposed as constant over time
at every pixel [5]. The equation 5.3 can be expressed in terms of n — frames
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(7.1) iAQ, cos(0)+ jAP,sin(6)

At every pixel, a temporal filtering 1D on this quantity to isolate motions or changes of interest.
In this case we propose use an 1D atomic function up(x). Spatial filtering can be achieved by
weighted blur with Plop function on the i and j components.

(7.2) iPlop(x,y)A¢,cos(0)+ jPlop(x,y)Ad,sin(0)

Motion amplify coefficients in the phase approach are in the same way as phase-shift a complex
number. A quaternion expression is amplified by o factor such as

(7.3) Acos(a¢)+iAsin(a@)cos(6) + jAsin(od)sin(0)

When multiply /j, this unit quaternion by the original coefficient (x) + ifr, (X) + jfRr,(X) the
real part can be expressed by [5]

(7.4) Iy =Acos(og) —AfR, sin(ag)cos(0) — Afr, sin(a¢)sin(0)

As a summary, the first step to phase magnification is to express the image sequence in terms
of the quaternion Riesz pyramid. The next step is to filter the local phase in a temporal way (as
a 1D signal). Then an amplify factor () is apply to the local phase(magnitude and local orien-
tation are not affected) , finally the Quaternion Riesz pyramid of the n frames is reconstructed.
This method is very time consuming due to we need 3 image sequence pyramids instead of one
Laplacian pyramid.

8. RESULTS AND ANALYSIS

8.1. 2D Magnification. Linear magnification of a RGB image sequence is shown in the Fig 3.
In order to show the difference between the original image sequence and the phase magnifica-
tion we select a Regio Of Interest (ROI) in the chest of a baby sleeping.

FIGURE 3. Left: ROI of the image sequence for 2D magnification.

Phase magnifications using the Riesz transform are presented in the Fig 4. From left to right,
original ROI, phase amplification of ROI and difference of each frame. From top to down we
show 5 frames att = 0:0.5 : 2sec.

8.2. 3D magnification. One contribution of this work is the use a InfraRed (IR) 5 depth sen-
sors Kinect™ (is a trademark of Microsoft Inc.) sensor. Kinect sensor provides a RGB-Depth
images with 640 x 480 images at 30 fps. Due to IR images of both sensor has more noise
than RGB images we use a phase technique in order to improve a linear Eulerian magnification
method in two aspects : it supports larger magnification, and it has better noise performance.
We select the same chest baby in order to show the breath frequency.
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FIGURE 4. Left: Linear magnification of a ROI of the image sequence.

FIGURE 5. IR image. It is possible to see the IR pattern has a lot of noise.

FIGURE 6. Depth image. We select a ROI of 3D image using the Kinect.

We use the depth map form the Kinect we present the 3D motion magnification Fig 7. From
left to right, original ROI, phase amplification of ROI and difference of each frame. From top
to down we show 5 frames atr =0: 0.5 : 2sec.
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FIGURE 7. Depth image phase magnification of the selected ROI .

In the selected ROI we compute the Signal to Noise ratio in terms of the mean of the ROI
(signal) and the standard deviation of the ROI (Noise) of the magnification areas. We can see
that the linear magnification Fig 8. has more variations, in contrast phase magnification 9 has a
shift in the breath peaks. Fig 10 shows the standard deviation with the linear magnification of

the ROI and the phase magnification of the same ROI we can see how the phase computation
has better noise performance.
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FIGURE 8. Linear magnification of the selected ROI.

9. CONCLUSIONS

As a conclusion, we present a new quaternionic method based on a unique compact supported
window infinitely differentiable, the atomic function up(x) . Additionally we present a 3D
magnification based on IR depth sensor Kinect'™. Due to IR images of both sensor has more
noise than RGB images we use a phase technique to improve the linear Eulerian magnification
method in two aspects it supports larger magnification, and it has better noise performance.
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Time vs Intensity
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FIGURE 9. Phase magnification of the selected ROI.
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FIGURE 10. Standard deviation of the selected ROI using a linear magnification.
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FIGURE 11. Standard deviation of the selected ROI using a Phase magnification.

Finally we compare, the Riesz Pyramids method and the linear magnification in terms of the
Signal to noise ratio (SNR), we found that the phase magnifications has better response than the
linear method. The phase motion magnification method has higher quality, however it is also
more expensive to compute . As a future work we want to use this approach in LEAP Motion
sensor and working in a faster method based on a Riesz approximation and quadrature filters
using atomic functions.
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ABSTRACT. Local control of a (general) trident snake robot is solved by means of conformal
geometric algebra. The equations of the direct and differential kinematics are assembled. The
Pfaff constraints are written in a geometric form which allows a universal solution for various
modifications of the mechanism. Also the inverse kinematics and the singular postures are
discussed and a solution is found. The functionality is demonstrated on a virtual model in
CLUCalc programme.

1. INTRODUCTION

Originally the general trident snake robot has been introduced in [9]. It is a planar robot with a
body in the shape of a triangle and with three legs consisting of ¢ links. Its precise description
is given below. Then, its simplest nontrivial version, corresponding to £ = 1, has been mainly
discussed, see e.g. [10], [11]. Within this paper, we focus on the general case of /—links. The
aim of this article is to solve the complete local control in a new geometric form.

In terms of generalized coordinates, the non—holonomic forward kinematics equations can
be understood as a Pfaff system and its solution as a distribution in the configuration space.
Rachevsky—Chow Theorem implies that the appropriate non—-holonomic system is locally con-
trollable if the corresponding distribution is not integrable and the span of the Lie algebra
generated by the controlling distribution has to be of the same dimension as the configuration
space. The spanned Lie algebra is then naturally endowed by a filtration which shows the way
to realize the movements by means of the vector field brackets [6, 4]. In the case ¢ = 1, the
system is locally controllable and the filtration is (3,6).

The classical approach composes the kinematic chain of homogeneous matrices using the mov-
ing frame methods and Euler angles, [3]. Instead of this, our aim is to use the notions of
conformal geometric algebra (CGA), where the Euclidean space E3 is included. In this geo-
metric setting, we can easily handle both linear objects and spheres of dimensions 2, 1 and 0,
see [2, 5, 7].

In particular, the O—dimensional sphere, referred to as a point pair, is used to derive the kine-
matic equations and for the control of the non—holonomic snake like robotic mechanisms, con-
sequently. More precisely, to any link of a single point pair is assigned and the mechanism is
transformed by rotations and translations. We introduce the forward kinematic equations (6),
the differential kinematic equations (7), as well as the non—holonomic conditions (8). We also
derive an equation for singular postures of the robot, (9). We demonstrate the theory on the 1—-
link trident snake and the functionality in the CLUCalc software designed for the computations
in Clifford algebra, particularly in conformal geometric algebra.

Date: June 30, 2015.
The authors were supported by a grant no. FSI-S-14-2290.
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2 TRIDENT SNAKE ROBOT VIA CGA

2. CONFORMAL GEOMETRIC ALGEBRA — CGA

The classical approach composes the kinematic chain of homogeneous matrices using the mov-
ing frame methods and Euler angles, or in advance using the quaternion algebra H by conjuga-
tion x — ¢~ 'xg, where we view an Euclidean point x as a quaternion

x = (x1,X2,x3) = x1i+x2j + x3k.

and q is a quaternion given by

q:cosg-l-using,

where u is an axis of rotation u;i + uy j + uzk. Instead of this, we use the notions of conformal
geometric algebra, i.e. the Clifford algebra €I(4, 1) where the Euclidean space E3 is included
by a mapping x — x + x?e., +eg. In this geometric setting, we can easily handle both linear
objects and spheres of dimensions 2, 1 and 0. Namely, these objects are simply elements of the
algebra and can be transformed and intersected with ease. In addition, rotations, translation,
dilations and inversions all become rotations in our 5-dimensional space, see [2, 5, 7].

More precisely, let R*! denote a vector space R’ equipped with the scalar product of signature
(4,1) and let {ey, e, €3, €4, e} be an orthonormal basis. The Clifford algebra ¢’I(4,1) can
be described as a free, associative and distributive algebra such that the geometric product e;e;
(i) coincides with the scalar product in the case i = j (ii) is equal to —eje; for i # j. Hence the
dimension of the algebra is 2° = 32.

Next to the geometric product, we define two additional products on R*! based on the geomet-
ric one for any u,v, € R*!, inner product and wedge product, respectively:

1 1
u-v= E(uv+vu), UNV = E(uv—vu)

and thus the basis elements are derived as uv = u - v+ u A v. The definition of these product
extends to the whole algebra. Namely, given two basis blades E; = e, N\ ---Aey and E; =
eq, N+ Neg, of grades k and [ respectively the wedge (outer) product is defined as

E,'/\Ej = <EiEj>k+l
while the inner product is defined as
ElEj = <EiEj>|k—l|7 i7j7> 0
=0,i=00rj=0,

where ( ), is the grade projection into grade k. These products can be used effectively to
compute an intersection of geometric objects and distances respectively.

The basis conformal geometric elements can represented by the multi-vectors from €1(4,1)
either in the inner product null space (IPNS) representation or in the outer product null space
(OPNS) representation. To work with CGA effectively, one defines ey = %(e_ +e;)and e =
(e— — e ). Consequently, the following properties hold.

e% =0, ei =0, exeq + egeo = —2

The geometric objects which we use in this paper are then given as follows.

object CGA element

Point Q0 =x+1x%ex+ey (IPNS)
Point pair 01,0, | P* = Q1 A Q, (OPNS)
PLine L L* = Q1 NQ> New (OPNS)
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TRIDENT SNAKE ROBOT VIA CGA 3

Each geometric transformation (rotation, translation, dilation, inversion) of a geometric object
represented by an algebra element & is realized by conjugation & — MOM, where M is an
appropriate multi—vector. For instance, the translation in the direction ¢t = t1e] + ey +13€3 1
realized by conjugation by the multi—vector

1
T=1—§teoo,

1
which can be written as e 27

conjugation by the multi—vector

, and the rotation around the axis L by angle ¢ is realized by
R= cos% —Lsin%
where L = ajerez +arerez +azeep. Similarly to the case of a translation, the rotation can be

1
also written as e 29

3. CONTROL THEORY OF THE TRIDENT SNAKE ROBOT

Model of the general trident snake robot is illustrated in Figure 3. It is a planar robot which
consists of a body in the shape of an equilateral triangle with circumscribed circle of the unit
radius and three branche legs. Each of the leg consists further of ¢ rigid links of constant unit
length interconnected by motorised joints and linked with the vertices of the triangular body by
motorised joints. Each link has a passive wheel at its center which provide an important snake-
like property that the ground friction in the direction perpendicular to the link is considerably
higher than the friction of a simple forward move. In particular, this prevents the slipping and
sliding sideways. We assume the wheels are placed in the link centers, but the case of a general
position is also discussed.

To describe the actual position of a trident snake robot we need the set of 3 4 3/ generalized
coordinates as shown in Figure 3. According to [9], we call g := (x,y,0) € SE(2) the configu-
ration vector and

0= (P11, P1e, 021+, 020,931, , 93¢) € ()

the shape vector. Then the generalized coordinates associated to our system are
(1 q=(g,4) €SE(2) x (s1)*

FIGURE 1. Trident snake robot model
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4 TRIDENT SNAKE ROBOT VIA CGA

3.1. Euclidean description. In this section, we rephrase the results of [9], where the kinemat-
ics of the trident snake robot is derived classically using euclidean geometry. First the euclidean
position vector of link centers is expressed in terms of generalized coordinates (joint angles) via
so called moving frame algorithm and then 3/ nonholonomic constraints are assembled. This
gives the following kinematic equation.

A($)R4=B(9)9,

where the matrices occurring in this equation are defined by

A1(9)
A(9) = | Ax(9) | e R,
A3(9)

sin((])ﬂ —+ OC,‘) — COS((])Z] —+ OCi) —1 —cos ¢i1
sin(@j1 + @ + &)  —cos(Pj1 + P2+ ;) —1—cos(di1 + ¢;2) — cos(p2)

i =

sin(ﬁj’:o—i—oci) —cos( ;O+Oci) -1 —Zi_:%)cosﬁjl.k
By 0 O
B=|0 B, 0| eR¥3

0 0 Bj

1 0 )

cos B 1 ... 0

B = .ﬁﬂ : R
cosfB; cosB, - 1
and where q; = —%77:, o =003 = %77: and Bj’k = Zi:kﬂ @i and Ry is the rotation matrix

by the angle 6 in the xy—plane. The control inputs are the angular velocities of the joints,
ie. u:=¢ € R, In order to derive the state equation, one defines an input transformation
u=B(¢) 'A(¢)v, where v is a (three dimensional) virtual input. Note that it is always possible
since B(¢) is regular for all ¢. Then one obtains a control (state) equation ¢ = Gv, where the
control matrix is equal to

o o= (MO A0

3.2. Direct and inverse kinematics via CGA. Now we show how to describe the system ex-
clusively in terms of the conformal geometric algebra. We can view the robot as three ordinary
(£ 4 1)-link snakes joint by their tails such that the tail links has a specific configuration. Fol-
lowing this idea we denote by Qg the center S of the body, and by Q}(, e ,Q£ the successive
joints of the k—th branch leg, k = 1,2, 3. As a central object that describe the state of the system
we choose the set of point pairs which represent individual leg links

3) P=(P),-- PP, P PY - ).

These point pairs are computed in terms of the wedge product in CGA as P,i = Q;'( A Q}jl. On
the other hand, Q}; is easily extracted from the pair point by a projection

—\/Pl-Pl+Pi

—Co - P!
oo L
Consequently, we may freely switch between point pairs and points defining their ends. Of

course, not all triples of pair points define a state of the robot. In terms of the CGA inner
product, the consistency relations read Q}- . Q1]< = —% for each j # k, and Q; - Q;{H = —% for

each i =0,...,¢. These equations tell that the joints have constant distance v/3 and the length
of links is 1 respectively. Implicitly, it also says that Q,(z are equal.
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TRIDENT SNAKE ROBOT VIA CGA 5

Having such an admissible state (3) wa can assess the kinematic equations. At first, let us look
at the zero position ¢ = 0. Since Q5(0) = [i,0], the elements in CGA corresponding to P; are
established as

4) Pé(O) = (ie1+%i2eoo+eo)/\( i+ 1)e; +2(i +1)Zeoo—|—eo)
= %l(l+ 1)€1°° —e10— %(2! + l)eoo(),
where we have used a shortened notation €1, = €] A €= etc. The algebra elements P! 3(0) which

correspond to the zero position of links of the first and the third branch leg are obtained from
the corresponding links of the first branch by rotation by angle 2 Fmand — 717 respectively, i.e.

5) Pi3(0) = (3% Bern)Pl(0) (3 F Lern).

The particular pair points in a general position ¢ as in (1) are obtained by a translation to [x, y]
composed by a trident body rotation 6 and a series of rotations of the corresponding leg links
by angles ¢y;. In CGA, it is expressed for each k =1,2,3 and i =0,...,¢ as a conjugation
(6) Pi(q) = M (q)P{(0)M;(q),
Mi(q) = Ry, Ry, Ro Ty,
where the translation 7 , and the rotations Ry, are given by
Toy=1-— (xe1 + yer)ew,

Ry, = cos %! ¢k’ — Ly, sin & ‘P’“

and where the axes of rotations are given by

L= (1— %Q}'{ew)elz(l + %Q};ew).
Note that we have used the notation ¢ = 6 for each k = 1,2,3 and note that the procedure is
recursive. Namely, given a point pair P, we compute the projection Q’Jrl first, then we compute
Lj41)x- From this axis we compute Ry and then by (6) we get P’+1

The CGA approach is convenient also for solvmg problems of the inverse kinematics. In CGA,
it can be done in a geometrically very intuitive way due to its easy handling of intersections
of geometric objects like spheres, circles, planes. A basic problem is finding the generalized
coordinates in terms of a robot position. In our case, having an admissible state (3), we first
compute the center S = Q,? by a projection of a point pair P2, and for each i = 1,2,3 we form

lines through two consecutive links Pli and P,i“ . Then we compute the coordinates via the
inner product as

x=3S-¢
y==5-e
080 = (P A ew) - €10e0
cosPri = (P N ew) - (PLA €w)
3.3. Differential kinematics and singular points via CGA. Let us now compute the velocity

of the direct kinematics, which is obtained by differentiating (6). It is proved in [7] that the
total differential of a general kinematic chain

O=R;...R,0(0)R,...R

containing any geometric object &’ and rotations Ry, ...R), is equal to

iﬁ Lildg;,
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6 TRIDENT SNAKE ROBOT VIA CGA

where [P-L;] is the inner product of the geometric object (in the actual position) and the axis of
the rotation R;. This formula follows basically from the fact that each rotation can be expressed
es an exponential. But the same is true for translations since we may view each translation as
a degenerate rotation, with an ‘axis‘ containing e... Hence the formula above holds true also if
we allow R; to be a generalized rotation, i.e. a rotation or a translation.

In our case, the equation of the direct kinematics is given by (6). A nice consequence of the
geometric formulation is that the same equation holds for an arbitrary chosen point Q attached
to P, i.e. Q= M;(q)Q(0)M;(q). The differentiation of this kinematic chain then yields the

following differential formula for any Q on Pli.

(7) 0 =10 1)t +[Q- ey + Y [Q- Lij]
=0

This equation can be seen as an analogue of the classical equation of differential kinematics.
Namely, we have a system of a usual form Q = J¢ but the enteries of the ‘Jacobi‘ matrix J are
the inner products of a point and an axis and thus belong to the algebra (and not to a field of
functions). If Q is the position of a wheel, then, as the wheels do not slip to the side direction,
its velocity is parallel to P!, which in CGA reads

(8) OAP New =0.

Now, if we substitute (7) in (8), we obtain a system of linear ODEs, which can be written in a
classical form Ag = 0, where the Pfaff matrix A is given by

A,‘j :Jij/\Pi/\eoo.

In our particular case, the wheels located at link centers Q = P,ieooﬁ,f, foreachi=1,..../—1,
and at the end of each of the leg branches O = Q{. Hence we get a system of 3/ first order
differential equations with 3¢+ 3 variables. It is easy to see that each A;; is a multiple of
(e3)*. Thus the Pfaff equation A¢ = 0 can be solved for A considered as a matrix over the field
of functions. Let us also remark that the particular position of wheels does not play any role
formally. The equations (7) and (8) are valid for any position. The positions of wheels influence
the inner products with joint axis and consequently the matrices J and A.

At the end of this section, let us discuss the postures of the robot which are critical for the
control. Such critical (singular) postures occure when the velocity constraints degenerate. It
is in the cases when two or more wheel axles are either parallel or intersect in one point.
Obviously, the former singular postures coincide with the latter if the center of rotation is in
infinity. Thus, in CGA, we have one equation describing such singular postures. Denoting by
01, 02,03 the wheel axles it reads

) o1VoyVoz=0,

where V is the meet operation in CGA. We can equivalently express this equation in terms of
the geometric product as (010203)1 = 0. If we denote by Q the position of a wheel attached to
the link P,ﬁ , then its axle o is computed by 0 = R /2P,£R,r /2 /\ €=, Where the rotation is given by
the formula

1 2 2 1
Rajr = (1 - 3002) (% — Fen)(1 43 0e).
4. 1-LINK TRIDENT SNAKE ROBOT
Here we demonstrate the theory on the simplest nontrivial case, i.e. the case ¢ = 1. For more

details see [14].
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4.1. Kinematics. For simplicity we omit the upper index denoting the first link from now on.
By (4) and (5), the zero position of point pairs associated to the leg links is given by

P>(0) = €100 — €10 — 3 €0,
Py 3(0) = —fe1w+ yero £ @ezm == \/7%20 — 3.
By (6), the general position of a point pair P is given by
Pc =Ry, RoTyPc(0) T, yRoRy,, -
The same kinematic chain holds for any point Q on Py. Thus, for the leg ends Q = (Q1,0>,03)7,
we get a differential equation Q = J¢, where

Ol-€le Q1€ Q1-Ly 0O1-L; 0 0
(10) J=|02¢€lec Or-€200 O2-Ly 0 0Ly 0
03-€1e Q3-€200 Q3-L 0 0 03 L3

Obviously, the nonholonomic constraints read Q; A P; A\ e« = 0. It leads to a Pfaff constraint
Aqg =0 with A;; = J;; A\ P; \ e and its solution in a point gives a control system ¢ = G, where
the control matrix G is a 6 x 3 matrix spanned by vector fields g, 2>, g3, where

g1 = cos 00, +sin 00y + sin @9y, + sin(P2 + ZF)dy, + sin(¢3 + *F)y,
g2 = sin 00, + cos 6y — cos P19y, — cos(Pr + 27”)8(,,2 —cos(¢3 + %”)8(;,3,
g3 =g — (1 +cos¢y)dy, — (14 cos¢2)dy, — (1 +cosP3)dy,.

It is easy to check that it agrees with the general result (2) obtained by the euclidean geometry.
By a direct computation, one can also check that equation (9) describing singular points gives
exactly the equation in [9, Remark 1 ].

By [9], these vector fields define a bracket generating distribution with growth vector (3,6) in
regular points. It means that in each regular point the vectors g1, g2, g3 together with their Lie
brackets span the whole tangent space. Consequently, the system is controllable by Chow—
Rashevsky theorem.

4.2. CLUCalc implementation. The proposed trident snake control was tested in CLUCalc
software, [2, 5], which is designed exactly for calculations in arbitrary predefined geometric
algebra. The following code piece contains the definition of the initial position:

// INITIAL POSITION
S0=VecN3(0,0,0);
LBO0=VecN3(0,0,1);
R=RotorN3(0,0,1,2xPi/3);
// Joints
Pb10=VecN3(1,0,0);
Pb20=Rxpbl0*"R;
Pb30=Rxpb20x"R;

// Axes
L10=TranslatorN3 (pbl0) *LBO*xTranslatorN3 (-pbl0) ;
L20=R*L10*"R;

L30=R*L20*"R;

// Ends of legs

pl0=VecN3(2,0,0);

P20=R*xpl0*"R;

P30=R*xp20*"R;

The initial position is thus recalculated with respect to the controlling parameters change to
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8 TRIDENT SNAKE ROBOT VIA CGA

get a current position. The code we demonstrate corresponds to the body and the first leg of the
trident snake robot. The other legs are computed in the same way.

T=TranslatorN3(x,y,0);
// BODY
// Center
S=TxS0x"T;
// Axis
LB=T+LBO*"T;
// Motor
MB=TranslatorN3 (LB) *RotorN3(0,0,1,d)* "TranslatorN3 (LB);

// FIRST LEG

// Joint

:Blue;
:pbl=MB*T*pbl0*"T* MB;

// Axis

L1=MBxT+L10*"Tx MB;

// Motor
Ml=TranslatorN3(Ll) *RotorN3(0,0,1,a)*TranslatorN3(-L1);
// End

:Black;
:pl=M1+MBxTxpl0*" T+ "MB* Ml;

The following three sets of pictures demonstrate the evolution from 0 in the direction of g1, g2
and g3 vector fields.

FIGURE 2. g direction (pictured by CLUCalc)

FIGURE 3. g; direction (pictured by CLUCalc)

FIGURE 4. g3 direction (pictured by CLUCalc)
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Over the last few years, recent advances in user interface and mobile computing, introduce the ability to
create new experiences that enhance the way we acquire, interact and display information within the
world that surrounds us with virtual characters [1], [2]. Virtual Reality (VR) is a 3D computer simulated
environment that gives the user the experience of being physically present in real or computer-generated
worlds; on the other hand, Augmented Reality (AR) is a live direct or indirect view of a physical
environment whose elements are augmented (or supplemented) by computer-generated sensory inputs.
Both technologies use interactive devices to achieve the optimum adaptation of the user in the immersive
world achieving enhanced presence [1], harnessing latest advances in computer vision, glasses or head-
mounted-displays featuring embedded mobile devices. A common issue in all of them is interpolation
errors while using different linear and quaternion algebraic methods when a) tracking the user’s position
and orientation (translation and rotation) using computer vision b) tracking using mobile sensors c) using
gesture input methods to allow the user to interactively edit the augmented scene (translation, rotation and
scale) d) animation blending of the virtual characters that augmented the mixed reality scenes (translation
and rotation).

In this proposed talk, we aim to enhance the conformal model of Geometric Algebra (CGA) [3], [4] as the
mathematical background for camera, display and character animation control [2] in immersive and
virtual technology, such as head-mounted displays (e.g. Google Cardboard™) or modern smartphones; a
framework that offers a smooth and stable calibration/control can be used in real-time mobile mixed
reality systems that featured realistic, animated virtual human actors who augmented real environments.
The conformal model of Geometric Algebra is a mathematical framework that provides a convenient
mathematical notation for representing orientations and rotations of objects in three dimensions, a
compact and geometrically intuitive formulation of algorithms, and an easy and immediate computation
of rotors; CGA extends the usefulness of the 3D GA by expanding the class of rotors to include
translations, dilations and inversions. Rotors are simpler to manipulate than Euler angles; they are more
numerically stable and more efficient than rotation matrices, avoiding the problem of gimbal lock. The
results of this work allow us to a) unify and improve the performance of previously separated linear and
quaternion algebra camera transformations b) fully replace quaternions for rotation interpolation with
faster CGA rotors, c¢) blend rotations and translations between character animations using CGA, under a
single geometric algebraic framework using CGA for Mixed Reality applications.
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ABSTRACT. The dimensional synthesis of wristed, multi-fingered hands can be used
for simultaneous tasks of all fingertips. When defining unconstrained positions for the
fingers, the synthesis is solved by ensuring the desired displacement for each branch of
the hand. The displacements and related geometric objects are expressed in the even
Clifford subalgebra ‘5031. If velocities are also defined, the corresponding Lie algebra
elements, defined on the same algebra, are also equated to the linear combination of
joint twist; accelerations can be defined in a similar way.

This approach successfully captures the independent motion of each fingertip. How-
ever, when the design task includes holding and manipulating an object, the constraints
between the fingertips need to be considered too.

In this work the conditions to create a hand motion compatible with grasping and
moving a given object, expressed in the Clifford algebra, are shown. The design
methodology is outlined and some of the simple grasping and manipulation cases are
presented.

1. INTRODUCTION

The design of end-effector robotic tools has focused on three different strategies [10],
which yield very different designs: anthropomorphism, designing for grasping tasks,
and designing for dexterous manipulation. Hands for in-hand manipulation tend to be
more complex, especially if a wide range of manipulation actions are targeted, while
underactuation is targeted for grasping and limited manipulation [11], [15], [5]. In
this research, we focus on creating multi-fingered hand designs specifically tailored to
desired groups of manipulation tasks.

We define a multi-fingered robotic hand as a series of common joints branching at least
once in several other serial chains (the fingers or branches), ending in a finite set of
end-effector links (the fingertips). Recently a methodology has been developed for the
design of new multi-fingered hands for kinematic tasks [20], both for finite and infini-
tesimal motion [21]. This methodology offers a systematic process to design innovative
end-effectors for a simultaneous task of all the fingertips [8]. However the design for
manipulation of a grasped objects requires a more careful strategy.

When the hand grasps and object, the constraints on the relative motion among fingers
need to be taken into account; the kinematic topology is switched from a tree topology
to a hybrid topology. In this application, we focus on a simple type of in-hand ma-
nipulation, for a given fingertip contact point [6] and some specified relative motion,
compatible with the contact. The mobility of the grasped object can be calculated for
the general case using mobility formulas, or using grasp or Jacobian matrix techniques
[3] if the hand kinematics and object geometry are at least partially known.
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2 VELOCITIES AND GRASPING WITH CLIFFORD ALGEBRA

Given a hand topology and the mobility for a generally-grasped object, a series of po-
sitions and subspaces of potential velocities are defined so that some properties of the
grasp are being checked while allowing the manipulation of the object. These positions
and velocities are expressed using the even Clifford subalgebra ‘KJ 3 1- Several authors
have used a Clifford or geometric algebra to define displacements and velocities of rigid
bodies an robotic systems, among others [7], [19], [1] or [2]. In particular, the analysis
of contacts using Grassman-Cayley algebra was developed in [22], the definition of con-
tacts for synthesis problem of planar linkages was developed in [12], and the analysis
and planning of grasping using geometric algebra has been studied in [23].

It is expected that the use of the Clifford algebra will allow a more compact and more
homogeneous expression of the grasping and manipulation actions including finite po-
sitions and its derivatives, for their use in the design of innovative robotic hands.

2. DISPLACEMENTS, VELOCITIES AND FORCES

Let (50‘?371 be the even Clifford subalgebra of the projective space P* with the degener-

ated scalar product. Starting with the basis vectors {ej,e;,e3,e4} € P4, the well-known
notation for the even blades,

e =i,e31 = j,enn =k,

e4) = i€,eqp = JE,e43 = kE,
(1 €1234 = €
is used along this work.

Consider a general element of this algebra as A = ag+aji+ayj+ask+ €(asi+asj+
agk 4+ a7), and the geometric product of two 1-vectors as the sum of the inner product
and the exterior product,ab=a-b+aAb.

The conjugation is defined for blades as (ejez...ex)* = (—1)ke;...ezeq; for scalars,
1* =1 and for basis vectors, e; = —e;.

The norm of an element is ||A||?> = a+ £a® = AA* and it has nonzero scalar and dual part.
For unit elements, ||A||?> = 1. The inverse of an element is defined as A~! = A*/||A||?,
so that for unit elements, such as displacements, the inverse is Al =A*

A point is defined as p = 1+ €(pyi + pyj+ p;k), and a line is defined as L = [,i +1,,j +
Lk+e(1%+ lgj + 1%k), being such that LL* = 1.
A finite displacement is a unit element of the subalgebra, and can be expressed as a

function of the invariants of the displacement, the screw axis S and the rotation ¢ and
slide ¢ about and along the axis. In particular,

e A translation of magnitude d along a directionsis D =1+ %s(sxi +5yj + 5:k)

e A rotation of magnitude ¢ and rotation axis s is R = cos % +sin %(sxi +5yj+5:k)

e A general displacement of screw axis S = s + &s’, rotation ¢ and slide ¢ is
Q = DR = cos % + sin%(sxi +5yj+s:k) + €((sin %sg + 5 cos %sx)i + (sin %sg +

Lcos 2sy)j+ (sin 52 4 Lcos 25, )k) — Lsin D)

2.1. Twists as 2-vectors. In order to define the velocities, we consider the differenti-

ation of the action of a finite displacement on a geometric element x expressed in the
moving frame,

2 X = OxQ" + 0xQ*,
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VELOCITIES AND GRASPING WITH CLIFFORD ALGEBRA 3

which leads to

3) X =(00")X +X(00")".
Define
4) V =200".

Recalling that Q needs to be a unit element in order to be a displacement, and taking
derivatives in the unit condition we obtain that QQ* = —(QQ*)*, which makes V a
pure element, that is, an element with zero scalar and pseudoscalar components. This
element is also denoted a 2-vector, as it is a linear combination of 2-blades only.

Using the definition in Eq.(4), the derivative becomes
o1

5) X:E(VX+XV*).

The definition in (4) can be arranged as

"
(6) 0=3V0,

which coincides with that in [7]. The element V = w + €v is the twist, which describes
the velocity of the rigid body, as the angular velocity of the body and the linear velocity
of a point of the body. For the calculations above, the point is the origin of the fixed
frame as considered part of the moving body.

If s = syi+syj+s:k and s0 = sgi +s8 Jj+ sgk, the computation of V using the expression
of displacement Q in (4) yields

(7) V=¢J = (s +e(s" +hs)).

Here S = s+ &s is the line defining the screw axis of the displacement, corresponding to
the minimal motion for the finite displacement. The magnitude 4 = é is called the pitch.
This 2-vector that contains both the angular velocity of the rigid body and the linear
velocity of the origin point, can be immediately identified with the six-dimensional

twist V = (w, v) defined in screw theory, while J would correspond to the unit twist, or
screw. [19].

Due to the different action used for lines and points (and planes), the conjugate 2-vector
in Eq.(5) becomes, for directions and lines,

®) V'=J" = (s — (s’ +hs)),
and for points and planes,
©) V= (—s+e(s° +hs)),

The Lie algebra se(3) can be built on this geometric algebra if we consider the 2-vectors
and define the commutator product of two elements V;, V, of the algebra as

1
(10) Vi, Vo] = §(V1V2 — Vo),
which is closed for the pure elements. Using the commutator, we can define

(11) ViVo = [V, Vo] + VI AV + V) - Vs

Notice that [V}, V5] yields the dual cross product used in the dual vector calculus [18],
while the exterior and inner product yield the minus dual dot product.

Integrating Eq.(6) and considering V' as constant, we obtain the finite displacement as
the exponential of the twist, defined as a power series, starting at the identity.

(12) 0=V =o't
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4 VELOCITIES AND GRASPING WITH CLIFFORD ALGEBRA

if we consider ¢ = ¢ /z.

This derivation can be found in detail for instance in [13] and it is used to create the
forward kinematics of serial robots as the Clifford product of exponentials.

2.2. Linear property of 2-vectors. The Clifford algebra is not a graded multi vector
algebra, however it is a graded vector space [4]: it can be decomposed as sum of linear
subspaces of homogeneous grade. The twists, or 2-vectors, form a vector subspace
within the Clifford algebra over the scalars (0-vectors) and also over the dual scalars,
which are the multi vectors constructed with elements of degree zero and degree four,
K = ko + €k7 [14]. The addition and product by scalar and pseudoscalar elements yields
a 2-vector in all cases,

(13) KiVi + K>V = kjowy + kaowa + 8(k10V1 + kpova + k17w —I—k27W2).

In summary, considering either scalars or dual scalars, the 2-elements, which we iden-
tify with screws for both twists and wrenches, can form vectors subspaces in the Clifford
algebra. We can see the finite screw systems as vector subspaces formed by elements
of degree 2 of the Clifford algebra.

2.3. Wrenches as reciprocal screws. The 2-vectors are used to express the twist de-
fined as before, W = w + €v and also the wrench F = m + €f, where m = myi +
myj + mzk is the resultant moment and f = f,i+ f,j + f;k is the resultant force at a
given point of the rigid body. The reciprocal product is defined in screw theory as
W« F =w-m+v- f; when this scalar quantity is zero, it is said that the twist and the
wrench are reciprocal.

Given a wrench or wrench subspace, representing the contact forces on a body, there
exists a reciprocal subspace of twists for the potential velocities allowed for the body.
This reciprocity, which exists at the level of first derivatives and for convex and polyg-
onal objects, is used in this work to define the grasping and manipulation actions as a
function of the twists.

The inner and outer products in Eq.(11) yield the scalar and pseudoscalar,
W-F=—-—w-m,
(14) WAF =—(w-f+v-m)e

3. KINEMATICS OF GRASPING FOR TREE TOPOLOGIES

3.1. End-effector twist and Jacobian. Let S; to S, be the ordered n axes of a serial
chain, and Ji,...,J, the corresponding unit screws, in which the pitch # =1¢/6 is used
to identify either a prismatic or a revolute joint. The product of exponentials

] 6,
(15) Q=21 3N
yields the relative motion of the rigid body attached to the last joint (the end effector)
with respect to a reference configuration. These are the relative forward kinematics
equations. The Jacobian matrix of the serial chain can be derived by finding the twist
of the end effector as in (4), noticing that in the product of exponentials, only the joint
variables 6; are a function of time,

. 90~ & 90
(16) v=200=2(Y 226)0=2Y (=20)6.
(£5500=21 G
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If we expand the above calculation, we obtain that for each axis,

Y

91 6i—1 6i_1 o .
I A= R A e § .y
QGQ)O_ 12’177 Jie il e 26

a7 ( :

Notice that this is the action of the displacement of the preceding joints, up to the

— 1" joint, on the i joint, for the current configuration of the serial chain. Denote
as Jl.’ = Q;_1JiQ;_ the current position of the screw, with Q; | being the displacement
due to the previous joints to joint i; the end effector twist becomes

n
(18) v=Y 6.
i=1

Notice that the expression of the screw J/ is parameterized by the previous i — 1 joint
variables.

The twist vector V is a linear combination of unit twists times scalar joint rates, and
contains the feasible velocities and angular velocities of the end-effector with respect
to the fixed frame. When written in matrix form with the screws as columns, they form
the fixed-frame Jacobian or spatial Jacobian matrix of the serial robot.

When the Jacobian matrix is to be created for a particular geometric entity X, consider
X = L(VX +XV*) =V x X, which yields

n
(19) Z )X X = Z (Ji x X)6;
with the columns of the J acoblan matrix modlﬁed for the particular geometric element
to consider. The derivation of the Jacobian can be found for instance in [1]. For wristed
robotic hands with a tree topology, the same derivation can be made, in which some of
the joints are common to some of the branches.

3.2. Grasp analysis. Grasping consists on locating several end effectors in contact
with the surface of an object, so that the forces applied at the contact points ensure
some desired resultant force property on the object, force closure being one of them. A
grasp is force closed if it can balance any external wrench applied at the object. In order
to analyze the grasping, it is then important to look at the static forces exerted or their
reciprocal potential velocities.

Let V; be the 2-vector for the twist of the end effector i, and F; the reciprocal 2-vector
corresponding to the wrench of the end effector 7, and let us consider b end effectors
able to exert contact forces on the object. Then we need to impose

b
(20) Y ciFi+F =0,
i=1
where F' is the external wrench on the object, and ¢; > O are the scalars defining a
positive grasp, all transformed to either the fixed frame or to an object frame. Figure 1
shows the typical local finger frame and the object frame in which the force balance is
stated.

The force closure can be expressed using reciprocal twists. A form-closed grasp is that
in which the space of feasible velocities is zero. Form and force-closed grasps coincide
for polyhedral, convex objects; for other cases, the curvature of the object needs to be
taken into account for the form-closed grasp.

For a pointy finger with no friction, we define a local frame such that F; = c;ke with
¢; > 0. In this frame, the z-axis is pointing towards the object, as shown in Figure 1. It
has been proved that for a general object, seven fingers are needed with positive forces
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6 VELOCITIES AND GRASPING WITH CLIFFORD ALGEBRA

FIGURE 1. Two fingers in contact with a convex object and their respec-
tive finger frames.

in order to ensure force-closed grasp. Obviously, if the scalar ¢; is allowed to take any
value, then six fingers are needed to balance any external wrench. When friction is
considered, the number of fingers can be further reduced.

The wrench of each finger can be transformed to an object frame (located for instance
at the center of mass) as F,; = Q;F;Q;, with Q; the displacement from the finger frame
to the object frame.

3.3. Kinematic model of a grasping hand. The definition of the number and position
of the contact points and the contact forces created on the object allows us to analyze
several aspects of the grasp. Assuming that some grasp synthesis method (see for in-
stance [16]) is used to compute those points, then the next step is to analyze wether the
end-effectors of the robotic hand (usually the fingertips) can reach the desired positions
and whether the needed forces can be applied.

If a robotic hand is represented as a tree graph as shown in Figure 2, then the robotic
hand grasping an object becomes a hybrid graph, in which the fingertip contacts can
be modeled as different types of joints. In Figure 2, the robotic hand in the left has
five fingertips, two palms and a wrist. The numbers on the edges denote the number
of joints in the serial chain. The graph in the right shows the same hand grasping an
object (square box) with the five fingertips and with contact also in one of the palms.
The contact joint is denoted as F.

FIGURE 2. A five-fingered robotic hand, left; grasping an object, right.

Several fingertip contacts are considered, depending on the modeling of the friction.
The simplest fingertip is what is called the pointy finger, in which a point contact with
no friction is considered. The description of the different fingertip contacts can be found
for instance in [17].
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Mason [9] defines, following Salisbury, contact types and the mobility and connec-
tivity (relative mobility of two links) of a robotic hand with several fingers using the
well-known Kutzbach-Gruebler formula, M for the mobility when the finger joints are
allowed to move, and M’ for the mobility when the finger joints are locked, which will
give the subspace of twists of the object when the hand is trying to immobilize the ob-
ject in a grasp. In addition we define M,, as the mobility of the hand minus the degrees
of freedom of the common joints up to the first split. These values are used a priori to
select appropriate hand topologies for a given task.

4. GRASPING AND MANIPULATION ACTIONS FOR SYNTHESIS

For this work we consider convex objects and spherical fingertips, and use twists in
order to define the grasp as potential velocities allowed on the contact.

Kinematic tasks can be defined for the following situations:

e Tasks in which the fingertips are compatible with the object geometry and the
object motion, without changing the position of the fingertips. The contact point
does not change.

e Tasks of rolling on the object surface, for a moving object.

e Tasks of sliding on the object surface, for a moving object.

In all these situations, force equilibrium can be enforced. This work focuses on the first
two points for particular geometries.

Assume that the geometry of the convex object is known and has principal curvatures
Pqi and py; at the contact point with finger i, P;. Each point has a corresponding surface
frame, with the local z axis is directed towards the object and the local x and y axes
at the plane tangent to the surface and correspond to the directions of maximum and
minimum curvature, and so that they form a direct trihedron.

Consider the fingertip as the center of a sphere of radius r, for a hand with b fingers. At
the reference configuration, the local frames of the fingers are translated in the negative z
direction from their corresponding surface frames, with the origin of these local frames
located at the center of the sphere corresponding to each fingertip, see Figure 3.

{F}

FIGURE 3. Transformation to finger frame.

An arbitrarly-located moving frame is attached to the object to be manipulated. The
contact points Py, ..., P, on the object can be calculated using a grasp synthesis method
and are given as local displacements from the object frame to the surface frame, Q;,
withi=1,...,b. The end-effector for each finger i must be then located as

1) Qﬂzgogi(l—gk@, i=1,...b,
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8 VELOCITIES AND GRASPING WITH CLIFFORD ALGEBRA

where Q, is the known position of the object.

4.1. Motion of the object with fixed contact points. In this simplest case of mo-
tion, the transformations Qy,...,Q; are fixed; no rolling, sliding or losing of contact

is allowed for the fingers. If nonfiction is assumed, then the rotation about the z axis,

Or; = cos% + sin %z, 1s allowed.

For an m-position synthesis task, with m = m,, + m,, for finite displacement and veloci-
ties, define m,, positions of the object, Qi, ..., Q% the simultaneous task for each finger
is

o N |
0} = 0)0i(1~ Ske), j=1,....m,
(22) i—1...b

Usually the synthesis uses relative positions with respect to a reference configuration,
taken as the first position. In this case, the relative position for each finger is identical,

1j j * i * j .
Ofl = 0(Q)" = 05(Qy)" =y, j=2,....my,
(23) i=1,...,b,
that is, considering the fingers as rigidly attached to the object. This is similar to the
synthesis problem for parallel robots, in which each of the legs of the robot has to reach

the relative motion of the platform. The finite-position synthesis is possible in this case
if the mobility of the hand-object system is positive.

A task with object velocities can be transformed to a task with positions or positions
and velocities at the fingertips. Consider the object twist V] associated to the object
displacement Q}. This fully defines the velocities of the fingertips, as

V]{i:Voj, ji=1,....m,,
(24) i=1,....b.

The velocity of the origin of the finger frame can be easily calculated from the object
twist and the displacement as

(25) Vi =V +Ww X p;.

4.2. Motion of the object with sliding fingers. In this case, the transformations Q1 ,...,0}
are to be specified for each position j in such a way that they are compatible with the
geometry of the object. The sliding allows to keep the same contact point in the spher-
ical finger, so that the transformation from the surface to the finger frame is constant,
(1—Fke).

For an m-position synthesis task, define again m,, positions of the object, ol.....om
the simultaneous task for each finger is

' iy T ,
0f; =0l0/(1-ke), j=1....m,
(26) i=1,...,b.
The relative position with respect to the first position for each finger is
{i o § .
27 i=1,...,b.

The selection of the displacements Q; can follow a surface trajectory. Assume that the
initial points obtained in the grasp planning stage are Qil. Global trajectories can be
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calculated if the geometry is well know. A local approximation from the first position
can be calculated using Taylor’s series, with

(28) Qi(t) =

so that the trajectory of a point on the surface is given by

X() = (0 + 2@l xoleh + (B2 )
(29) :(1+%V1t+...)X(1+%V1*t+...),

where V| must be such that the point velocity is tangent to the surface, that is, in the local
x —y plane. For curved surfaces, it is necessary to incorporate the second derivative in
order to move along the surface. For this work we focus on convex polygonal objects.

In the surface frame, the relative twist of the finger is
(30) ri — (in + Vyj>8

so that the overall finger twist can be linearly calculated,
Vj VJ V]"‘Qf, J,Q}, ;o J=1my,
(31) i=1,...,b.

For a synthesis task, more than one twist can be defined at a given position, effectively
defining the subspace of potential velocities of the fingertip. Given a hand with mobility
M >0 and M' = 0, defining M velocities for the fingertips fully specifies the allowable
twists and ensures that the fingertip’s motion will be in the desired subspace for each
position.

For the case of polygonal objects,
Vril = VyI€
(32) Viiy = vyi€

defines the sliding on the surface of the object for a particular position. Applying these
conditions, the fingertips of the synthesized hand will move on the surface of the object
while performing the specified motion of the object.

5. CONCLUSIONS

The design of hands for specific grasping and manipulation tasks using kinematic syn-
thesis requires a definition of fingertip displacements and velocities compatible with
the object geometry, selected contact points, desired object motion and type of contact
fingers. In this work a first analysis is developed in order to create kinematic tasks of
fingers to create hands able to manipulate objects while keeping some grasping con-
straints. The initial cases presented here need to be developed to include other type of
finger actions and link contacts. The use of these tasks may lead to the design of hands
better tailored to specific applications.

REFERENCES

[1] E. Bayro-Corrochano and J. Zamora-Esquivel. Differential and inverse kinematics of robot devices
using conformal geometric algebra. Robotica, 25:46-31, 2007.

[2] S. Berman, D.G. Liebermann, and T. Flash. Application of motor algebra to the analysis of human
arm movements. Robotica, 2007.

[3] J. Borras and A.M. Dollar. A parallel robots framework to study precision grasping and dexterous
manipulation. In IEEE International Conference of Robotics and Automation (ICRA), Karlsruhe,
Germany, May 2013.

243



10 VELOCITIES AND GRASPING WITH CLIFFORD ALGEBRA

[4] B.Fauser and R. Ablamowicz. On the descomposition of clifford algebras of arbitrary bilinear form.
In Proceedings of the 5th International Conference on Clifford Algebras and their Applications in
Mathematical Physics, June 27- July4, 1999, Ixtapa, Mexico, 1999.

[5] Markus Grebenstein. Analysis of the current state of robot hands. In Approaching Human Perfor-
mance, volume 98 of Springer Tracts in Advanced Robotics, pages 11-37. Springer International
Publishing, 2014.

[6] L.Han and J.C. Trinkle. Dextrous manipulation by rolling and finger gaiting. In IEEFE International
Conference of Robotics and Automation (ICRA), 1998.

[7] D. Hestenes. New tools for computational geometry and rejuvenation of screw theory. In
E. Bayro Corrochano and G. Scheuermann, editors, Geometric Algebra Computing in Engineer-
ing and Computer Science. Springer, 2010.

[8] A. Makhal and A. Perez-Gracia. Solvable multi-fingered hands for exact kinematic synthesis . In
Advances in Robot Kinematics, Ljubljiana, Slovenia, June 2014.

[9] M.T. Mason. Mechanics of Robotic Manipulation. The MIT Press, 2001.

[10] M.T. Mason, S.S. Srinivasa, A.S. Vazquez, and A. Rodriguez. Generality and simple hands. Inter-
national Journal of Robotics Research, 2010.

[11] L.U. Odhner and et al. A compliant, underactuated hand for robust manipulation. The International
Journal of Robotics Research, 33(5):736-752, 2014.

[12] N. Patarinsky Robson and J. M. McCarthy. Kinematic Synthesis With Contact Direction and Cur-
vature Constraints on the Workpiece. volume 8, pages 581-588, Las Vegas, NV, 2007. ASME.

[13] A. Perez Gracia and J. M. McCarthy. The kinematic synthesis of spatial serial chains using clifford
algebra exponentials. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of
Mechanical Engineering Science, 220(7):953-968, 2006.

[14] LR. Porteous. Clifford Algebras and the Classical Groups. Cambridge Studies on Advanced Math-
ematics, 50, Cambridge University Press, 1995.

[15] M. Quigley, C. Salisbury, A.Y. Ng, and J.K. Salisbury. Mechatronic design of an integrated robotic
hand. The International Journal of Robotics Research, 33(5):706-720, 2014.

[16] A. Sahbani, S. El-Khoury, and P. Bidaud. An overview of 3d object grasp synthesis algorithms.
Robotics and Autonomous Systems, 60(3):326-336, 2012.

[17] J.K. Salisbury and J.J. Craig. Articulated hands: Force control and kinematic issues. The Interna-
tional Journal of Robotic Research, 1(1):4-17, 1982.

[18] J. M. Selig. Geometric Fundamentals of Robotics (Monographs in Computer Science). Springer Ver-
lag, 2005.

[19] J.M. Selig and E. Bayro-Corrochano. Rigid body dynamics using clifford algebra. Advances in
Applied Clifford Algebras, 20:141-154, 2010.

[20] E. Simo-Serra and A. Perez-Gracia. Kinematic synthesis using tree topologies. Mechanism and
Machine Theory, 72 C:94-113, 2014.

[21] E. Simo-Serra, A. Perez-Gracia, H. Moon, and N. Robson. Design of multi fingered robotic hands
for finite and infinitesimal tasks using kinematic synthesis. In Advances in Robot Kinematics, Inns-
bruck, Austria, June 2012.

[22] E. Staffetti and F. Thomas. Analysis of rigid body interactions for compliant motion tasks using
grassmann-cayley algebra. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS 2000), Takamatsu, Japan, November 5-9, 2000.

[23] J. Zamora-Esquivel and E. Bayro-Corrochano. Robot perception and handling actions using the con-
formal geometric algebra framework. Advances in Applied Clifford Algebras, 20:959-990, 2010.

244



SLICE-REGULAR FUNCTIONS OVER CLIFFORD ALGEBRAS
AND HARMONIC FUNCTIONS

A. Perotti?

¢ Department of Mathematics
University of Trento, Trento, Italy
perotti@science.unitn.it

ABSTRACT. The Cauchy-Riemann operator on the real Clifford algebra of signature (0,n)
factorizes the Laplacian operator of R"*!. Here we present some new relations between the
Cauchy-Riemann operator and the class of slice-regular functions on the Clifford algebra. Slice-
regular functions, which comprise all polynomials, constitute a recent function theory in several
hypercomplex settings, including quaternions and Clifford algebras (cf. [6, 8, 5]). A formula,
relating the differential operator characterizing slice regularity [2, 7], the spherical derivative
of a slice regular function [8], and the Cauchy-Riemann operator, is given. The computation of
the Laplacian of the spherical derivative of a slice regular function gives a result which implies,
in particular, the Fueter-Sce Theorem for monogenic functions. In the two four-dimensional
cases represented by the Clifford algebra R 3 and by the space of quaternions, these results are
related with the zonal harmonics on the three-dimensional sphere and the Poisson kernel of the
unit ball.

INTRODUCTION

Let Rg, denote the real Clifford algebra of signature (0,7n), with basis vectors ey,...,e,. The
Cauchy-Riemann operator

@—i_i_ i+...+ i
~ 9xp el&xl én ox,

on R, factorizes the Laplacian operator of the paravector space

Rn+1 = {xO +x1e1+---xpep | X05--e5Xn € R}

We show some new relations between the Cauchy-Riemann operator, the Laplacian operator
and the class of slice-regular functions on a Clifford algebra. Slice-regular functions constitute
a recent but rapidly expanding function theory in several hypercomplex settings, including
quaternions and real Clifford algebras (cf. e.g. [6, 8, 3]). This class of functions was introduced
by Gentili and Struppa in 2006-2007 [6] for functions of a quaternionic variable. Let H denote
the skew field of quaternions. For each imaginary unit J in the sphere

Sm={J€H|J*=—1} = {xji+x2j+x3k | x} +x34+x3 = 1},
let C; = (1,J) ~ C be the subalgebra generated by J. Then we have the “slice” decomposition

H= U Cy, withC;NCg =R forevery J,K € Sy, J # £K.
JeSy

A differentiable function f: Q C H — H is called (left) slice-regular on Q if, for each J € Sy,
the restriction

f‘gm(cj : QHCJ%H

is holomorphic w.r.t. the complex structure defined by L;(v) = Jv. For example, polynomials
f(x) =Y, x"ay with quaternionic coefficients on the right, or more generally convergent power

Partially supported by grants FIRB 2012 “Differential Geometry and Geometric Function Theory”, MIUR
Project “Proprieta geometriche delle varieta reali e complesse” and GNSAGA of INdAM.
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2 SLICE REGULARITY AND HARMONICITY OVER CLIFFORD ALGEBRAS

series, are slice-regular on H. Observe that (non-constant) polynomials are not in the kernel of
the Cauchy-Fueter operator

d d . d

Ter = o0x1 +J8x2 + oxz’

d +i
1
0xg
Every quaternionic polynomial f(x) =Y, x"a,, lifts to a unique polynomial function F : C —
H ® C which makes the following diagram commutative for all J € Syy:

CoRerC —F = HeRC

@ | K2

H 5 m
where @; : H® C — H is defined by ®;(a +ib) := a+Jb. (namely F(z) =Y, z"ap, with
z=a+ib € C.) This property is equivalent to the following: for each z = o+ iff € C, the
restriction of f to the 2-sphere o + Sy = Ujcs, ®/(2), is an affine function w.r.t. J € Sy. In
this lifting, the usual product of polynomials with coefficients in H corresponds to the pointwise
product in the algebra H® C.

This approach to slice regularity can be pursued on a ample class of real algebras. Given a real
alternative *-algebra A, with linear antiinvolution x — x¢, such that (xy)¢ = y“x¢ for all x,y € A
and x¢ = x for x real, let #(x) := x +x° € A be the trace of x and n(x) := xx° € A the norm of x.
The quadratic cone of A

24 =RU{xe€A|t(x) €R,n(x) € R, 4n(x) > t(x)*}
admits the slice decomposition in complex lines:

= U Cy, with C;NCg =R foreachJ,K € Sys,J # +K, where
JESA

Sa={J€24|J?P=—-1}={J€A|t(x) =0, n(x) = 1} is the “sphere” of imaginary units of
A. Observe that 24 = A if and only if A ~ R, C,H, O (the algebra of octonions).

By imposing commutativity of diagrams

C~RQC —5 A®C

@ | @

QA % A

for all J € Sy (with ®; : A® C — A defined by ®;(a + ib) := a+ Jb), we get the class of
slice functions on A. More precisely, let D C C, invariant w.r.t. complex conjugation. If F :
D — A®C satisfies F(z) = F(z) for every z € D, F is called a stem function on D. Let
Qp = Ujes, Ps(D) C 24. Then the stem function F = Fy +iF> : D — A® C induces the (left)
slice function f = .7 (F) : Qp — A in the following way: if x = a +JB = ®;(z) € QpNCy,
then
f(x) = Fi(z) +TF(2).

The slice function f is called (left) slice-regular if F is holomorphic. The function f is called
intrinsic if F| and F, are real-valued (a case already considered by Fueter [4] for quaternionic
functions). In this case, the condition f(x“) = f(x)¢ holds for each x € Qp. When A is the
algebra of real quaternions and the domain D intersects the real axis, this definition is equivalent
to the one proposed by Gentili and Struppa.

Let A be the Clifford algebra R ,, with basis elements ex = ¢;, ---¢;, with g = 1, K =
(i1,...,ix) multi-index, 0 < k < n. Every x € R, can be written as x = } g xgeg, with xg € R.
The Clifford conjugation x +— x¢ is the unique antiinvolution of Ry, such that e¢f = —e; for
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i=1,....n. fx=xp+x1e1+ - +x5e, € R"T!, then x° = xg — xje] — - - - — xpe,. Therefore
t(x) = x +x° = 2x0 and n(x) = xx° = |x|%. The same relations hold on the entire quadratic cone

DRy, ={x€Ro,u [t(x) eR,n(x) eR} D R+
For example, QRO, , =Rp1 ~C, QROJ = Ro 2 ~ H, while

4
QRO& = {X S R073 | X123 = X1X23 — X2X13 +X3X12 = 0} DR
is a real algebraic set of dimension 6.

Each x € g, can be written as x = Re(x) + Im(x), with Re(x) = xgxc, Im(x) = x_zxc = BJ,

with B = [Im(x)| and J € Sp , := Sg,,, (the “sphere” of imaginary units in R ).

In the next sections we will introduce a differential operator ¢ characterizing slice regularity [2,
7] and the notion of spherical derivative of a slice function [8]. Then we will prove a formula,
relating the operator ¥, the spherical derivative and the Cauchy-Riemann operator on Ro . The
computation of the Laplacian of the spherical derivative of a slice regular function gives a result
which implies, in particular, the Fueter-Sce Theorem for monogenic functions (i.e. belonging
to the kernel of the Cauchy-Riemann operator &). We recall that the Fueter’s Theorem [4],
generalized by Sce [10], Qian [9] and Sommen [11] on Clifford algebras and octonions, in our
language states that applying to an intrinsic slice regular function the Laplacian operator of R*
(in the quaternionic case) or the iterated Laplacian operator A"~ 1)/2 of R"t1 (in the Clifford
algebra case with n odd), one obtains a function in the kernel, respectively, of the Cauchy-Fueter
operator Zcr or of the Cauchy-Riemann operator Z.

These results take a particularly neat form in the two four-dimensional cases represented by
the Clifford algebra Ry 3 and by the space of quaternions. As we will show in Sections 2 and
3, in these cases there appear unexpected relations between slice regular functions, the zonal
harmonics on the three-dimensional sphere and the Poisson kernel of the unit ball.

1. THE OPERATOR ¥

For each alternative *-algebra A there exists [7] a differential operator
9: 6 Q\R,A) — F°(Q\R,A)

which characterizes slice-regular functions on Q C 24 among the class of slice functions. In
particular, when A is the Clifford algebra Ry ,, the operator ¥ has the following expression

d Im(x) d
pToue ey ser SN DR

D= 5
|K|=1.2 (mod 4) XK

(cfr. [2] for an equivalent operator defined on the paravector space R"! C ZRy.,)-
Theorem 1 ([7]). If f € €' (Q) is a slice function, then f is slice-regular if and only ifof=0
on Q\R. IfQNR £ 0 and f € €' (Q), then f is slice-regular if and only if 5 f = 0.

2. THE LAPLACIAN OF THE SPHERICAL DERIVATIVE

Let f = .7 (F) be aslice function, with F = F; +iF; and Fi,F> : D C C — Ry,

Definition 1. The function f{ : Q — Rg ,, called spherical value of f, and the function f} :
Q\R — Rqp, called spherical derivative of f, are defined as

F200 =3 (F) 4 ) and - f(x) = 5 Im(x)™ (700) — £ ().
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4 SLICE REGULARITY AND HARMONICITY OVER CLIFFORD ALGEBRAS

If x=a+ BJ, z=a+Bi, then f°(x) = Fi(z) and f/(x) = B! F»(z). Therefore f° and f! are
slice functions, constant on every sphere Sy = &+ Sp ,8. Moreover,

fx) = £ (x) +Im(x) £5(x)
for each x € Q\ R (this holds also on QNR if F € €').

Since the paravector space R"*! is contained in the quadratic cone 2g,,» We can consider the

restriction of a slice or a slice-regular function on an open domain in R"*!. These restrictions
uniquely determine the slice function.

Theorem 2. For each slice function f: Q C R — Ry ,,, of class €'(Q), the following
formula holds:

Pf-9f=1-n)f.
Corollary 3. Let f: Q CR"™ ! — Ry, be a slice function, of class €' (Q). Then

a) f is slice-regular if and only if 2 f = (1 —n)f].
b) Let n > 1. Then f is slice-regular and belongs to the kernel of & if and only if f is
(locally) constant.

Let f = .#(F), with F = F| 4 iF; a stem function with real analytic components F}, F>. Since

F(Z) = F(z) for every z, the functions Fj,F> : D C C — Ry, are, respectively, even and odd
functions w.r.t. the variable 3. Therefore there exist G; and G, (again real analytic) such that

Fl(avﬁ):Gl(a7ﬁ2>7 Fz((X,B)ZﬁGz(OC,ﬁZ).
If x=a+BJ,z= a+ i, then

£ (%) = Gi(, B?) = Gi(Re(x),n(Im(x)),

£i(x) = Ga(at, B*) = Ga(Re(x), n(Im(x)).

The functions G| and G, are useful in the computation the Laplacian of the spherical derivative
and of the spherical value of a slice regular function.

Theorem 4. Let f = .7 (F): QCR"! — Ro.» be (the restriction of) a slice-regular function.

G
Let G, (u,v) stand for the partial derivative 8_2 (u,v) and let A, 11 be the Laplacian operator
%
on R"™1. Then it holds:

a)
Any1f;(x) = 2(n—3) 2Ga(Re(x), n(Im(x))).
b) Foreachk=0,1,...,[%5],

A1 fy(x) =2(n=3)(n—5) - (n—2k — 1) %3 Ga(Re(x), n(Im(x))).

n—>3 (sto

An—i—lfs/(x) = n(Im(x)) aX() (X) _fsl(x)) :

To obtain a) and b) is sufficient that F; has harmonic components on D.
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Four dimensional case (n = 3).

Corollary 5. Let f: Q CR* — Ro3 be slice-regular. Then

a) fi is harmonic on Q, i.e. its eight components are harmonic real functions.
b) The following generalization of Fueter-Sce Theorem for R 3 holds:

DALf = MDf = -2, = 0.
C) Aﬁ f =0, ie. every slice regular function on Ry 3 is biharmonic.

To have point a) it is sufficient that F> has harmonic real components on D, for example that f
be slice-harmonic, i.e. induced by an harmonic stem function on D C C.

Higher dimensional case (n > 3 odd).

Corollary 6. Let n >3 odd. If f : Q C R — R, is slice-regular, then

a) (An+1)% f1 is harmonic on Q.
b) The following generalization of Fueter-Sce Theorem for Ry , holds:

D(As1)'T F=(Ans1)'T Df = (1=n) (Aps1)'T £ =0.

c) (An_._])%f =0, i.e. every slice regular function on Ry , is polyharmonic.

As regards the spherical value of a slice-regular function, we can still compute its Laplacian. In
general, even in the four dimensional case, it is not a harmonic function, but it is biharmonic.
Theorem 7. Let f = . (F) : Q CR"™ ! — Ry, be a slice-regular function. It holds:

a)

Ani1 S5 (x) = (Aps1f)g () = 2(n — 1) 2G 1 (Re(x), n(Im(x))).
b) Foreachk=0,1,...,["5}]
At /() = 25 (n = 1)(n =3) - (n— 2k + 1) 3G (Re(x),n(Im(x))).
9)

a /
Bt £30) = (1= m) 52 )

d) Whenn=3, A3f° =0. In general, (Ay+1) 2 f2 =0,

Again, to obtain a) and b) it is sufficient that | has harmonic real components on D.

Four dimensional case: zonal harmonics and the Poisson kernel. Thanks to Corollary 5,
for any polynomial f = Zi:oxmam with coefficients in Ry 3, the spherical derivative of f is a
harmonic polynomial on R*: f! = (¥4 _, x’"am)fv =Y _ (¥ a,. In particular, the spherical
derivative of a Clifford power x is homogeneous harmonic polynomial of degree m — 1, with
real coefficients, in the variables xg,x1,x2,x3. Moreover, for each slice-regular f, the spherical
derivative f; is constant on the 2-spheres Sy = o + S 33.

Let B be the unit ball in R*. Let 2;,(x,a) denote the four-dimensional (solid) zonal harmonic
of degree m with pole a € dB (see e.g. [1]). From the uniqueness properties of zonal harmonics,
and its invariance w.r.t. four-dimensional rotations, we then get the following result.

Proposition 8. Let B be the unit ball in R*. For every m > 1 and every a € 9B, it holds:

D) Ziyr(x,1) = m(e"),
b) 2 1(x,a) = 2 1(xa 1) = 251 (xa, 1) = m(x™)" (xa®).
c) (x™)L = —2[(xX™)], where X is the Kelvin transform.
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6 SLICE REGULARITY AND HARMONICITY OVER CLIFFORD ALGEBRAS

—x? . . .
Let Z(x,a) = % be the Poisson kernel for the unit ball B in R* (x € B, a € dB). From the
series expansion (see [1]) Z(x,a) =Y, _y Zn(x,a), we get:

Proposition 9. The Clifford Koebe function g(x) = (1 —x)~2x is slice-regular on R*\ {1} and
has the following properties: for every x € B,

=[x
/
g(x) = Z(x,1) = x— 1‘4'
For everya € dB and x € B,
L[«
gi(xa‘) = P(x,a) = a

3. THE QUATERNIONIC CASE

When n = 2, the Clifford algebra Ry ; is isomorphic to the field H of quaternions. In this case
the paravector space has dimension three and then the corollaries of Section 2 are not applicable.
However, similar results still hold since the computations made in Theorem 2 on the paravector
space can be repeated anytime there is a real subspace of the quadratic cone containing the real
axis. The simplest example of this setting is given by the quaternions, where the quadratic cone
coincides with the whole algebra: 2y = H.

By means of the identifications e; =i, e; = j, e12 = ij = k, in coordinates (x0,x1,X2,x3) of
X = xo+x1i+x2j +x3k € H, the differential operator ¥ takes the form [7]
— 4 Im(x) 0
U= + ( ) in—.
dxo n(Im(x)) = dx;

For every slice function f: Q C R3 — Ry, of class ¢! on a domain Q in the three-dimensional
space of (quaternionic) paravectors, Theorem 2 gives

If-0f=~Ff.
If we consider the whole quaternion algebra, we must instead use the Cauchy-Fueter operator
d d d d d
Der=—+i—+j—+k=—=D+k—.
cF 8x0 +l8x1 +]a)C2 + aX3 + &X3

Let © and Z¢r be the conjugated differential operators:

9 Imx) &9
0‘am_mm@»;”£;

and o 0 9 9
(7 A A
cF 8x0 : 8x1 J 8)62 a)C3
For the Cauchy-Fueter operator the analogous of Theorem 2 is the following:

Theorem 10. For every slice function f: Q C H — H, of class €1 (Q), the following formulas
hold:

Derf—Of=-2f, and  Dcrf—Of=2f,.
Corollary 11. Let f : Q C H — H be a slice function of class €1 (Q). Then

a) f is slice-regular if and only if Dcrpf = —2f).
b) f is slice-regular and belongs to the kernel of Ycr if and only if f is (locally) constant.
C) ﬁfs/ = .@C[st/.

The last statement follows from the fact that (f}). = O for every slice function f.
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SLICE REGULARITY AND HARMONICITY OVER CLIFFORD ALGEBRAS 7

Theorem 12. If f: Q C H — H is slice-regular, then

a) The spherical derivative f| is harmonic on Q (i.e. its four components are harmonic
real functions).
b) The following generalization of Fueter’s Theorem holds:

Derdaf = MDerf = —204f, =0

As a consequence, Ai f = 0: every quaternionic slice-regular function is biharmonic.

d
For each slice function f = .7 (F), its slice derivative of can be defined as the slice function

dx
JF d
induced by the stem function e If turns out that 8_f = 9 f. From Theorem 12 it follows that
Z X
af: af!
if f is slice-regular, then Zcr (a—fs) = Pcr (Of]) = 0 and therefore also af > is harmonic.
X X

Corollary 13. Let B be the unit ball in R*. For every m > 1, it holds:
a) m(x™). = Z,_1(x,1). Therefore Dcp(x™) = —%fm,l(x, 1).

S
b) The restriction of (x™)’, to the unit sphere dB coincides with the Gegenbauer polynomial

C,Sfll (x0)-
¢) The quaternionic Koebe function g(x) = (1 —x)2x is slice-regular on H \ {1} and it
holds | |2
1—|x
&) = 2(x,1) = oI
for every x € B.
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ABSTRACT. Maxima is the open source descendant of the first ever computer algebra system. It
is written entirely in Lisp and is distributed under GNU General Public License. At present there
are two packages which support Clifford algebras. Maxima has its own programming language,
which is particularly well suited for handling formal mathematical expressions. The scripts can
be compiled also to Lisp within the program itself. The package atensor partially implements
generalized (tensor) algebras, including Clifford, Grassmann, and Lie-algebras. It is distributed
as a shared package with the main program distribution. The package clifford, authored by the
presenter, implements specifically Clifford algebras. Clifford relies heavily on the rule-based
simplification system of Maxima for simplification of Clifford products, outer products, scalar
products and inverses.

1. BRIEF INTRODUCTION TO MAXIMA

Maxima is the descendant of the first ever computer algebra system, MACSYMA. Maxima
is derived from the Macsyma system, developed at MIT in the years 1968 — 1982 as part of
Project MAC. Maxima is written entirely in Lisp and is distributed under GNU General Public
License. At present the system is supported by a team of volunteer developers. Maxima has its
own programming language, which is particularly well suited for handling formal mathematical
expressions. The scripts can be compiled also to Lisp within the program itself. Lisp programs
can be also loaded and addressed within the system. The system also offers the possibility of
running batch tests and demonstrations.

1.1. Data types. Maxima supports the following primitive data types[2]: numbers (rational,
float and arbitrary precision); strings and symbols. In addition there are compound data types,
such as lists; arrays; matrices and structs. Mathematical and physical constants are represented
as arbitrary precision numbers. There are also undefined special symbolic constants, such as
the boolean symbols true and false and the complex imaginary unit i and undefined special
symbolic constants, such as different infinities and infinitesimals.

1.2. Operators. There several types of operators supported by Maxima. An operator is a
symbol that may be either of unary prefix or unary postfix, binary infix, n-ary infix, matchfix,
or nofix. "Matchfix” means a pair of symbols which enclose their argument or arguments, and
’nofix”” means an operator which takes no arguments. It is possible to define new operators with
specified precedence or to redefine the precedence of existing operators (see example in Fig.
1). Maxima distinguishes between operators which are nouns and operators which are verbs. A
verb form of an operator evaluates its arguments and produces an output result. A noun form of
an operator appears as a symbol in an expression, without being executed. By default, function
names are verbs. A verb can be changed into a noun and vice-versa.

Date: June 12, 2015.
The author is partially supported by a grant from Research Fund — Flanders (FWO), contract number
0880.212.840.
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2 CLIFFORD ALGEBRA SUPPORT IN MAXIMA

FIGURE 1. Infix operator definitions in Maxima

(

“innter product”,

infix (777, 130, 129),

”"”(a, b):= if scalarp(a) and scalarp(b) then axb else expand((a.b + b.
a)/2),

texput (777, 7 \\circ 7, infix),

“outer product”,

infix (7&”, 130, 129),

"&”(a, b):=if scalarp(a) and scalarp(b) then O else expand((a.b — b.a)
12),

texput (7&”, 7 \\wedge 7, infix)

)

1.3. Expression processing in Maxima. An expression contains a sequence of operators,
numbers and symbols. The value of an expression is the value of the last assigned member.
In such way every expression in Maxima is a lambda construct.

Different transformation rules can be associated with any given operators in Maxima. In ad-
dition it is possible to assign also transformation rules to general symbols. Maxima has an
advanced pattern matching mechanism, which supports such operations. Rules can be add to
the built-in simplifier in two ways: by using the commands tellsimp or tellsimpafter. tellsimp
rules are applied when appropriate, based on the main operator, before the built-in simplifica-
tion while tellsimpafter, are applied after the built in simplification (Fig. 2). The augmented
simplification is then treated as built in, so subsequent tellsimp rules are applied before the
previous ones.

The simplifier subroutine operates by descending the tree of an expression until it gets to atoms,
and then simplifies the smallest pieces and backs out.. e.g.

simp : f(a,b) — f(simp(a),simp(b)) — simp(f).

2. BASIC PROPERTIES OF CLIFFORD ALGEBRAS IN VIEW OF IMPLEMENTATION
STRATEGIES

In this section are given only the essential properties of Clifford algebras over the reals. These
properties are directly implemented in available Maxima packages. The exposition is given
after [1].

A Clifford algebra is an associative algebra which is generated by a vector space V over a field
K of characteristic different from 2 The algebra contains a copy of the vector space V and
is equipped with a quadratic form Q(v). The algebra is equipped with a scalar unit denoted
conventionally by / and a (non-commutative) product referred to as Clifford product. The
square in the Clifford algebra CI(V, Q) is defined by

vw:=0(Ww)1, WweV

The unit is usually skipped from notation and the square of the vector is denoted conveniently
by v2. The notation CI 1.q.r(K) is interpreted as the convention that in the so-specified algebra p
imaginary unit elements square to 1, g to -1 and r to 0. For a given Clifford algebra CI, , -(R)
over the real numbers the form is given by

2 2_ .2 2
O(V) =i+ V=V = = Vg
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CLIFFORD ALGEBRA SUPPORT IN MAXIMA 3

For any two basis vectors of the algebra Span{e; ...e,} the following anticommuting relation
holds

(1) eiej=—eje;, i# ]
Every vector for which Q(v) # 0 has an inverse vector
-1 \4
vV =——
o(v)
The inner (dot) and outer (wedge) products of two vectors a and b are defined by
b+b
(2) a-b ;:m
2
b—b
(3) alb ::%

The general multivector (blade) A is decomposed by the grade projection operator (-) :

”
4) A=Y (4),

g=0

where by convention (A-), is the scalar part, (A-), is the vector part. The inner and outer
products are extended to blades in the following way:
) Ar-By = <AFBS>\V—S|

FIGURE 2. Expression simplification in Maxima

identify
——————— main

operator

user rules
present?

apply apply
default tellsimp  fo-----

rules rules

apply tell-
simpalter
rules

user rules
present?

-- tellsimpafter rules
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4 CLIFFORD ALGEBRA SUPPORT IN MAXIMA

FIGURE 3. Simplification rules in clifford

/%
simplification rules
x/
4 matchdeclare (dd, lambda([u], freeof(asymbol,u)));

defrule (clifsimpl , ddsaa, ddxdotsimpc(aa));
defrule (clifsimpl0O, aa, dotsimpc(aa));
defrule (clifsimp2, dd/aa, ddxdotinvsimp(1/aa));

9 /%
full simplification of expressions
x/
declare (cliffsimpall, evfun);
cliffsimpall (expr):=block([res],
14 res :expand (expr),
res:applyl (res, clifsimp2, clifsimpl, clifsimpl0),
ratsimp (res)

);
3. IMPLEMENTATIONS OF CLIFFORD ALGEBRAS

At present there are two packages which support Clifford algebras. Both packages set simplifi-
cation rules for the non-commutative dot-product operator (-”).

3.1. The package atensor. The package atensor authored by Viktor Toth partially implements
generalized (tensor) algebras, including Clifford, Grassmann, and Lie-algebras [3]. At present
it is distributed as a shared package with the main program distribution [2].

Supported algebras can be one of the following:
Universal: The universal algebra has no commutation rules.
Grassmann: The product is defined by the commutation relation
u-v+v-u=0
Clifford: The product is defined by the commutation relation
u-v+v-u=-2sf(u,v)
where sf(u,v) is a symmetric scalar-valued function.
Symmetric: The product is defined by the commutation relation
u-v—v-u=_0
Therefore, it is commutative.
Symplectic: The product is defined by the commutation relation
u-v+v-u=2af(u,v)

where af(u,v) is an antisymmetric scalar-valued function.
Lie envelop: : The product in the algebra of the Lie envelope is defined by the commuta-
tion relation
u-v—v-u=2av(u,v)
where av(u,v) is an antisymmetric function.

The atensor package uses the matrix aform where the function values for base vector arguments
are stored. When the algebra type is selected by the user, this matrix is preinitialized. For
this purpose, when a Clifford, Symplectic, or Lie enveloping algebra is selected, the user can
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CLIFFORD ALGEBRA SUPPORT IN MAXIMA 5

FIGURE 4. Demonstration session of atensor

Definition of Lie-bracket
Ibr(u,v) :=u.v—vu
lbr (u,v) :=u.v—v.u

A : atensimp(lbr(u,lbr(v,w)))
2 (u.av(v,w)) —2 (u.av (v,w) —2av (u,av(v,w)))

B : atensimp(lbr(v,lbr(w,u)))

2 (av (u,w).v) —2 (av (u,w).v—2av(av (u,w),v))

C : atensimp(lbr(w,lbr(u,v)))

2 (av(u,w)-v—2av(av(u,w),v)) — 2 (av(u,w)-v) +
2 (u-av(vyw)—2av(u,av(v,w))) —2 (u-av(v,w))

A+B+C
0

optionally enter values that determine the algebras dimensionality. For a Clifford algebra, up
to three values can be used, specifying the positive, degenerate, and negative dimensions of
the algebra, respectively. For a symplectic algebra, the numbers of regular and degenerate
dimensions are specified. For Lie enveloping algebras the user is asked for a single number
specifying the algebra’s dimensionality. The atensor package comes also with built-in support
for complex, quaternion, Pauli and Dirac algebras.

3.2. The package Clifford. The package clifford, designed by the present author, implements
only on Clifford algebras. In contrast to atensor, clifford relies extensively on the Maxima sim-
plification routines and is fully integrated into the command prompt evaluation. The package
defines several geometric product simplification rules which are integrated in the built-in Max-
ima simplifier (see Fig. 3). The code is distributed under GNU Lesser General Public License
from GitHub http://dprodanov.github.io/clifford/. Clifford defines multiple
rules for pre- and post-simplification of Clifford products, outer products, scalar products, in-
verses and powers of Clifford vectors. A demonstration is presented in Fig. 5.

FIGURE 5. Simplification in clifford

Simplification of inverses:

1/(1+e[l]),clif fsimpall;
-1 +eq

2
Outer product calculation:

e[l] & e[2];
(()?4—26[1]) & (1+e[l]),expand;

Inner product calculation:

(1+e[l]) ~ (1 +e[l]),expand,
261
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6 CLIFFORD ALGEBRA SUPPORT IN MAXIMA

FIGURE 6. Quaternion algebra with clifford

Computation of Quaternion multiplication table:

mtable2();
1 €1 () el.ep
(4] —1 e€1.ep —e€n
en —e1.en —1 4]
ep|.er en —e] —1

Computation of Quaternion inverses :

block (declare([a,b,c,d],scalar),
cc:atb*e[l]l+c*xe[2]+dxe[1l] . e[2],
dd:cinv (cc)
)
a—eb—eyc—(e1.er)d

a’+b>+c?+d?

Checking the obtained result:

ev(dd.cc,expand, ratsimp)
1

Reflection of the vector a = 3e; +4e, —e3 by b =3e; —2e) — e3 is demonstrated in Fig. 7A.

Bi-vectors spanned by the vectors Span{ej,e;} and Span{3e; +4e;,2¢; —3e,} are demon-
strated in Fig. 7B.

FIGURE 7. Vector and bi-vector display in clifford

A — plotting of vectors; B — plotting of bi-vectors.
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A curve r : R — R? having polynomial components ry(&),r2(&),r3(E) € R[E] is called a
Pythagorean-hodograph curve (or PH curve) if the squared Euclidean norm of its tangent vec-
tor r'(§) equals the square of a real polynomial 6(&) € R[&]:

ri(€)* +15(8)* +15(8)* = 0 (§)*.
This requirement makes the arc length function of r a polynomial function and it makes the
unit tangent vector a rational curve. Details on these and other useful properties, which make
PH curves particularly attractive for computer-aided design, can be found in [1].

Pythagorean-hodograph curves can be effectively studied using the quaternionic notation. Within
the algebra of quaternions
H=R+iR+jR+ kR,

it turns out that a polynomial curve r : R — iR 4 jR + kR is a PH curve if, and only if,

r'(§) = ()i (8)
for some quaternionic polynomial <7 (§) € H[E]. See again [1], which also points out the
original references.

Because of this feature, many properties of the PH curve r can be studied by means of the
corresponding quaternionic polynomial 7 (&). The talk will describe the work under con-
struction [2], which uses this technique to study the subclass of PH curves that admit rational
rotation—minimizing frames. It will also mention the previous work [3] on a quadratic equation
that arises in the construction of a surface patch with prescribed boundary curves and with PH
isoparametric curves.
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Electromagnetism-like Equations for Fluids in Higher Dimensions
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Octons form a new algebraic structure, which is non-comutative but associative. For every
different physical system; the scalar, pseudoscalar, vector and pseudovector parts of octon can
be easily used for different purposes. It is clearly thought that octons will also be useful for
representations of physical quantities in plasma and find an extensive application area in
Physics. An alternative formulation is written for Fluid Maxwell Equations in terms of octon.
It is demonstrated that the associative octons present a convenient and capable tool to describe
the Fluid Maxwell Equations in compact and simple way.

Fluid is governed by Euler’s equation of motion and equations of continuity, entropy and
vorticity. Enthalpy and velocity vector are analogous to the vector potential and scalar
potential in the classical electromagnetism. These can also be presented in terms of octons.
The analogy between Fluid Maxwell Equations and Electromagnetic Maxwell equations in
terms of octons is obtained and this is very interesting. When this analogy is used, a
Faraday’s-like law and Ampere’s —like law in fluids are found. Equations of continuity for
fluids can be written in terms of octons.

There are analogy between octonic fluid field and octonic electromagnetic field. Four Fluid
Maxwell equations can be given by a single equation with octons. This equation is compact
form so it is very useful and this situation is similar to compact Electromagnetic Maxwell
equations.
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ABSTRACT. A 4D rotation can be decomposed into a left-isoclinic and a right-isoclinic rotation.
This decomposition, known as Cayley’s factorization of 4R rotations, can be performed using
Elfrinkhof-Rosen method. In this paper, we present a more straightforward alternative approach
based on the fact that there is an orthogonal basis, in the sense of Hilbert-Schmidt, for the space
of 4x4 real orthonormal matrices representing isoclinic rotations.

Cayley’s factorization has many important applications. It can actually be seen as a unify-
ing procedure to obtain the double quaternion representation of 4D rotations, the quaternion
representation of 3D rotations, and the dual quaternion representation of 3D rigid-body trans-
formations. Hence its interest in different Geometric Algebras.

As a practical application of the proposed method, it is shown how Cayley’s factorization can
be used to efficiently compute the screw parameters of 3D rigid-body transformations.

1. INTRODUCTION

Any rotation in R* can be seen as the composition of two rotations in a pair of orthogonal
two-dimensional subspaces [1]. When the module of the rotated angles in these two subspaces
are equal, the rotation is said to be isoclinic. It can be proved that any rotation in R* can
be factored into the commutative composition of two isoclinic rotations. Cayley realized this
fact when studying the double quaternion representation of rotations in R* [2]. This is why
this factorization is herein named after him. It is actually Cayley whom we must thank for
the correct development of quaternions as a representation of rotations, and for establishing
the connection with the results published by Rodrigues three years before the discovery of
quaternions [3]. Although Cayley’s papers contain enough information to derive a practical
method to perform this factorization, he wrote them before the full development of matrix
algebra thus remaining somewhat cryptic to most modern readers.

The development of the first effective procedure for computing Cayley’s factorization is at-
tributed in [4] to Van Elfrinkhof [5]. Since this work, written in Dutch, remained unnoticed,
other sources (see, for example, [6]) attribute to Rosen, a close collaborator of Einstein, the
first procedure to obtain it [7]. The methods of Elfrinkhof and Rosen are equivalent. They are
based on a clever manipulation of the 16 algebraic scalar equations resulting from imposing
the factorization to an arbitrary 4D rotation matrix (see [4, 8] for a detailed explanation of this
method).

In this paper, it is shown how Cayley’s factorization admits a closed-form matrix formula whose
derivation requires no other tools than elementary linear algebra. It is thus shown that, contrar-
ily to what seemed unavoidable in previous formulations, there is no need to manipulate any
set of algebraic equations.

This work was partially supported by the Spanish Ministry of Economy and Competitiveness through project
DPI2014-57220-C2-2-P.
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2 CAYLEY’S FACTORIZATION OF 4D ROTATIONS

Cayley’s factorization has important applications. Recently, it has been shown how it allows
converting a rigid-body transformation in homogeneous coordinates to its corresponding dual
quaternion representation in a very straightforward way [8]. This leads to a two-fold matrix
and dual quaternion formalism for the representation of rigid-body transformations that per-
mits a better understanding of dual quaternions and how they can be advantageously used in
Kinematics. In this paper, it is shown how the application of the derived closed-form formula
leads to a neat way of obtaining the dual quaternion representation of rigid-body transforma-
tion, thus providing a simple alternative to the standard approach based on the computation
of screw parameters [9, p. 100]. Screw parameters can actually be seen as a by-product of
Cayley’s factorization.

This paper is organized as follows. Section 2 summarizes some basic facts about 4D rotations
that are used in Section 3 to derive a spectral decomposition of isoclinic rotations. Then, a
closed-form formula for the computation of Cayley’s factorization is presented in Section 4.
Section 5 gives details on a mapping between general displacements in 3D and some 4D rota-
tions which is used in Section 6, together with the the derived closed-form formula, to obtain the
dual quaternion representation of rigid-body transformation and, as a by-product, their screw
parameters. Some conclusions are finally drawn in Section 7.

2. ISOCLINIC ROTATIONS

After a proper change in the orientation of the reference frame, an arbitrary 4D rotation matrix
(i.e., an orthogonal matrix with determinant +1) can be expressed as [10, Theorem 4]:

cosQy —sino 0 0

1) sinq;  cos( 0 0
0 0 cosOp —sinop
0 0 sin®  cosOp

Thus, a 4D rotation is defined by two mutually orthogonal planes of rotation, each of which is
fixed in the sense that points in each plane stay within the planes. Then, a 4D rotation has two
angles of rotation, ¢ and o, one for each plane of rotation, through which points in the planes
rotate. All points not in the planes rotate through an angle between «; and ;. See [11] for
details on the geometric interpretation of rotations in four dimensions.

If oy = Lo, the rotation is called an isoclinic rotation. An isoclinic rotation can be left-
or right-isoclinic (depending on whether ; = o or a; = — 00, respectively) which can be
represented by a rotation matrix of the form

o =z L =1

L il —hL —b
2) R = L L b L)’
L L I
and
ro —r ) r
(3) RR: r3 ro —n ) :
—n r o r3
—rn —r —r3 n

respectively. Since (2) and (3) are rotation matrices, their rows and columns are unit vectors.
As a consequence,

4) B+B+5+53=1
and
() R+ =1.
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CAYLEY’S FACTORIZATION OF 4D ROTATIONS 3

Without loss of generality, we have introduced some changes in the signs and indices of (2) and
(3) with respect to the notation used by Cayley [2, 6] to ease the treatment given below and to
provide a neat connection with the standard use of quaternions for representating rotations in
three dimensions.

Isoclinic rotation matrices have three important properties:
(1) The product of two right- (left-) isoclinic matrices is a right- (left-) isoclinic matrix.
(2) The product of a right- and a left-isoclinic matrix is commutative.

(3) Any 4D rotation matrix, according to Cayley’s factorization, can be decomposed into
the product of a right- and a left-isoclinic matrix.

Then, a 4D rotation matrix, say R, can be expressed as:

(6) R = RERE = RERE
where
(7 RE = 10T+ 11 A | + b As + 13A3
and
(8) R* = rol+r1B; + 2By +r3B3,
where I stands for the 4 x 4 identity matrix and
00 0 —1 001 0 0 -1 0 0
a=lo1 0 ol 2={Z100 of A=lo 00 1]
10 0 0 010 0 0 01 0
00 0 1 0 0 10 0 -1 0 0
Bi={ o' ool B=|1 000l B=|o o o1
-1 0 0 0 0 -1 0 0 0 0 -1 0

Therefore, {I,A1,A;,A3} and {I,B;,B,,B3} can be seen, respectively, as bases for left- and
right-isoclinic rotations.

Now, it can be verified that

9) A2=AF=A=AAA; =1,
and
(10) B =B2=B=B;B,B; = —L

We can recognize in these two expressions the quaternion definition. Actually, (9) and (10)
reproduce the celebrated formula that Hamilton carved into the stone of Brougham Bridge.

Expression (9) determines all the possible products of Ay, Ay, and A3 resulting in
AlAy =A;,  AA3=A, A3A=Ay,
(1D AcA; = —-A3, A3A=-A, AA3=-As.

Likewise, all the possible products of By, B, and B3 can be derived from expression (10). All
these products can be summarized in the following product tables:

T A A Ay

I|T A A, A;

(12) AllA; -1 A; —A,
ArlAy —A; —1 A

AslAs Ay —A; -1
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4 CAYLEY’S FACTORIZATION OF 4D ROTATIONS

T B, B, B;

I/I B, B, B;

(13) BB, -1 B; —-B,
B, B, -B; -1 B

B;B; B, -B; —I

Moreover, it can be verified that
(14) Al'Bj = BjA,‘.

which is actually a consequence of the commutativity of left- and right-isoclinic rotations.
Then, in the composition of two 4D rotations, we have:

(15) RiR; = (R{RY)(RERY) = (RIRE)(RFRY).

It can be concluded that Rl-L and Rf can be seen either as 4 x4 rotation matrices or, when
expressed as in (7) and (8) respectively, as unit quaternions.

3. A SPECTRAL DECOMPOSITION

The set of matrices {I, Aj, A, A3} form an orthogonal basis in the sense of Hilbert-Schmidt for
the real Hilbert space of 4 x 4 real orthonormal matrices representing left-isoclinic rotations.
Then, (7) can be seen as a spectral decomposition. If we left-multiply it by each of the elements
of the set {I,A;,A>,A3}, to obtain the different projection coefficients, we have that

(16) Il = —RE+ 1A | + hAs + 13A3,

(17) LI=—A R —pA| + hAs — A,
(18) LI = —ARE —[pAs — 1A3 + A,
(19) LI = —A3RE — [p)As+ 11 Ar — bA,.

Then, by iterative substituting and rearranging terms in (16)-(19), we conclude that the coeffi-
cients of the spectral decomposition (7) can be expressed as:

(20) loI = %( R +ARYA| + AsRPA, + AsRPA3)
1) hl=— i(R A;+A R+ A3RMA, — A,RMA;),
(22) L1 = —% (R*A; + AoRY +A|RPA; — A3RMA ),
(23) Bl= —}1 (R*A3 + AsRY+ A,RPA| — A RMA,) .

Likewise, we can consider the set of matrices {I,B;,B,,B3} as an orthogonal basis in the
sense of Hilbert-Schmidt for right-isoclinic rotations. Then, the coefficients in (8) could also
be obtained as above.

266



CAYLEY’S FACTORIZATION OF 4D ROTATIONS 5

4. MATRIX FORMULATION OF CAYLEY’S FACTORIZATION

Let us define the following matrix linear operators for arbitrary 4D rotation matrices:

Z(R) = (~R+ AiRA; + AsRA; +AsRAS),

AR) = —% (RA; + AR +A3sRA; — AsRA3),

Z(R) = —i (RA>+ AR +ARA; — AsRA),
(24) Z(R) = —% (RA3+A3R+ARA| — A RAy).

According to (20)-(23), Z(RF) =11, i=0,...,3. Then, using the commutativity property of
left- and right-isoclinic rotations, it is straightforward to prove that

(25) Z(R) = Z(R'R) = Z(R").Z(RF) = 1RR.

We arrive at an important conclusion: .%;(R) and RX are equal up to a constant factor. More-
over, since RX is a rotation matrix, the norm of any of the rows and columns of .%;(R) is liz.
This provides a straightforward way to compute Cayley’s factorization. Indeed,

Zi(R)

26 RR =
0 [det(Z(R))]'/*
and

[det(-Z:(R))]"/*

Observe that we have two possible solutions for the factorization depending on the sign chosen
for the quartic roots in (26)-(27). Actually, it is well-known that quaternions provide a double
covering of the space of rotations.

5. A USEFUL MAPPING

Chasles’ theorem states that the general spatial motion of a rigid body can be produced a ro-
tation about an axis and a translation along the direction given by the same axis. Such a com-
bination of translation and rotation is called a general screw motion [12]. In the definition of
screw motion, a positive rotation corresponds to a positive translation along the screw axis by
the right-hand rule.

In Fig. 1, a screw axis is defined by n = (ny,ny,n;)7, a unit vector defining its direction, and
gp, the position vector of a point lying on it, where p = (px, py, p.)7 is also a unit vector. The
angle of rotation 0 and the translational distance d are called the screw parameters. These screw
parameters together with the screw axis completely define the general displacement of a rigid
body.

In [8], the following mapping between 3D transformations in homogeneous coordinates and a
subset of 4D rotation matrices was proposed:

_(R3xz t) 5 ~ R3.3 et
(28) T‘( 07 1) —T=1et’Rys 1)
where € is the standard dual unit (€2 =0). The interesting thing about this mapping is that the
Cayley’s factorization of T can be expressed as TL/TR where

(29) T = cos (§) X+sin (§) (2B, + 4, B, +7:B3)

267



CAYLEY’S FACTORIZATION OF 4D ROTATIONS

dn

qp

/

FIGURE 1. Geometric parameters used to describe a general screw motion.

where fi = (7, Ay, ;)T =n-+eq(pxn) and § = 6 + d (see [8] for details). Thus, the coeffi-
cients of the Cayley’s factorization of T give us the screw parameters of T. This is exemplified
in the next section.

6. EXAMPLE

Let us consider, as an example, the transformation in homogeneous coordinates

0 01 4
1 0 0-3
(30) T= 01 0 7
0 0 0 1
Then, according to (28),
0 o0 1 4e
~ 1 0 0 —3e
@1 T= 0 1 0 7e |’
3e —T7¢ —4e 1
and, according to (24),
- 1 - - - -
fo(T) = _Z <—T—|—A1TA1 + A, TA, +A3TA3>
1 —1—11¢ 1+4+4¢ 1+¢
_ Ll 1+11e 1 —1—¢ 1+4e
4| -1-4e 1-¢ 1 1+11e
—1—e —-1—-4e —1-1le¢ 1
1
(32) :—Z[I+(1+£)Bl+(1+48)B2—|—(1+11£)B3]
Therefore,
~ 1
(33) TR = —— [+ (1+&)B; + (1 +4¢)By + (1 + 11¢)B3].

4l

Since, according to (5), r(% + r% + r% + r% =1, we have that

34
G 1612

[1+(1+e)?+(1+4e)* +(1+11e)?] =

_ 4+32
162
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CAYLEY’S FACTORIZATION OF 4D ROTATIONS 7
Thus,
(35) lo==+(5+2¢).

If we take the negative sign (remember that the solution is unique up to a sign change), we
conclude that

— :——28 s =z —5€
=5 ge 270 T oyge 27 2%
L4 L _l+lle
270248 2 3T 04 ge 272%™

That is, the unit dual quaternion representing the transformation in homogenous coordinates
given by T can be expressed as:

(36) TF = (3 —2€) I+ (3 - 3€) Bi + (3) Ba+ (3 + 7€) Bs.

To obtain the corresponding screw parameters for this rigid-body transformation, we can simply
identify (36) with (29). This identification yields:

(37) cos< ) —0.5-2¢,

(38) sin(§) =05 1.5,

(39) fysin(§) =0

(40) A, sin<§) 0.5+ 3.5¢.
Solving (37) for 6 = 6 + ed we get

(41) 0=12n andd:\%.

Then, substituting 6= 37r —|—8 1n (38)-(40), we conclude that
@) = ()

and

(43) g(p xn) = (_6\/21’_%714\/651)T

If p and n are assumed to be orthogonal, it is concluded from (43) that g = 4/ %j As a
consequence,

(44) pxn=(—0.3742, —O.O3984,0.9264)T.
Finally, using (42) and (44), we have that
(45) p=nx (pxn)=(—0.5579,0.7509, —0.1930) .

7. CONCLUSIONS

Cayley’s factorization can be used to obtain the double quaternion representation of 4D rota-
tions and, as a particular case, the quaternion representation of 3D rotations. Nevertheless,
a much more interesting application arises when observing that this factorization can also
straightforwardly be used to derive the dual quaternion representation of 3D rigid-body trans-
formations. This requires the application of a simple mapping between 3D rigid-body transfor-
mations in homogeneous coordinates and 4D rotation matrices. To exemplify this, a detailed
worked example has been presented.
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8 CAYLEY’S FACTORIZATION OF 4D ROTATIONS

The conversion of a rigid-body transformation in homogeneous coordinates to its corresponding
dual quaternion counterpart has traditionally been performed by computing the screw parame-
ters of the rigid-body transformation. We have shown how Cayley’s factorization provides an
alternative and straightforward way to perform this conversion.
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Abstract:  In this talk we present the necesary tools to generalize the function spaces
F(p, q, s) and F -0 (p, q, s) introduced by Zhao in [1] to the case of the monogenic functions
defined in the three dimensional unit ball. Obtaining at the same time the generalization of
Op monogenic spaces presented by Guerlebeck ez al in [2] and El-Sayed ez a/ in [3].
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ABSTRACT. We describe the local control of a (6-8)-link snake like robot endowed with om-
nidirectional wheels on two links (head and tail). All calculations including the position, direct
kinematics, differential kinematics and inverse kinematics are described in the terms of CGA
only.

1. INTRODUCTION

Let a non-holonomic system be described by the appropriate dynamic (Pfaff) system of ODEs,
which defines the vectors of admissible motion directions (w.r.t. the controlling parameters).
These vectors together with the Lie bracket operation generate a Lie algebra corresponding to
the original system. Consequently, a non—-holonomic system is said to be locally controllable
if the linear span of its appropriate Lie algebra generators is of the same dimension as the con-
figuration space (Rachevsky—Chow Theorem). Furthermore, while generating the Lie algebra,
one obtains a natural filtration (w.r.t. the number of Lie bracket applications). The elements of
the higher filtration parts correspond to the motions, which can not be realized locally but are
necessary for local controllability. A general interpretation of such motions is crucial for local
controllability description and realization. The main goal of the talk is to employ an advanced
mathematical tool of the Conformal Geometric Algebra (CGA) in the snake robot modeling in
order to achieve the optimal control of particular solutions.

2. CONFORMAL GEOMETRIC ALGEBRA — CGA

Let R*! denote a vector space R> equipped with the scalar product of signature (4,1), let
%1(4,1) denote the corresponding Clifford algebra, i.e. a free, associative and distributive
algebra as a span of the set {e], e, e3, e, e_} such that the following identities are satisfied:
e%ze%ze%zei: 1, & =—1,
eiej = —eje;, i# j, i,j € {1,2,3,—{—,—}.
In this case, we get 2° = 32-dimensional vector space. Let us note that the norm in R*! can
be understood as a vector square x> = ||x||*>. Now, we define two additional products on R*!
based on the geometric one for any u,v € R*!, dot product and wedge product, respectively:
1 1

u-v= 5(uv+vu), UNV = E(uv—vu)

and thus the formula for the geometric product can be derived as

uw=u-v+ulv.

Date: June 29, 2015.
The authors were supported by a grant no. FSI-S-14-2290.
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2 GEOMETRIC CONTROL OF ROBOTIC SNAKES BASED ON CGA: (4,5,7,8-10) FILTRATION

Generally, the wedge (outer) product of two basis blades E; and E;, with k = gr(E;), [ = gr(E;)
is defined as

EiNEj = (EiEj)iyi

and the dot (inner) product is defined as

EEj (EiEj) k- l:,j,> 0 |
0 i=0or;j=0,
where gr(E) is a grade of the basis blade E and ( ) is the grade projection into the blade of
the grade k. To work with CGA effectively, we have to define a new basis of R*! as a set
{e1, €2, €3, €0, €} such that eg = 3 (e_ +e,.) and e = (e~ —e.; ). Consequently, the following
properties hold:
e% =0, ei =0, eceog=—1—e_Ne4, egec =—1+e_ANe,,

€ool) = —€0Co0 — 2.

In CGA, we can represent the basis geometric elements by the following multivectors from
¢l(4,1):

1
point x ~» Q = x+ Exzec,o +ep
sphere of radius .~ 1
rand center C $=¢ " e

point pair Q1,02 ~ P = Q1 A Q».

In CGA (in fact in GA generally), any transformation of the element O is realized by conjuga-
tion
O — MOM

where M is the appropriate multivector from %/(4,1). For instance, the translation in the
direction t = tje| + tre; +t3e3 is realized by the multivector

1
M:=T=1—~tews
Ste

and the rotation around the axis L by angle ¢ is realized by the multivector

(0 .0
M:=R= — —Lsin —
(:os2 sm2

where L = ajezes +asreie3 +azeje;. For more information refer to books [2, 8] or papers [3, 4].

3. THE FLAG STRUCTURE

The snake robot described in this paper consists of 6-8 rigid links of constant length 2 inter-
connected by motorized joints. Except for the first and the last, to each line, in the center of
mass, a pair of wheels is attached to provide an important snake-like property that the ground
friction in the direction perpendicular to the link is considerably higher than the friction of a
simple forward move. In particular, this prevents the slipping sideways. To determine the actual
position of a snake robot we need the set of 8—10 generalized coordinates

(1) qg=(x,y,0,P;,ic{l,....N}) €M,

where N € {5,6,7} and M = R? x (S))¥*! which describes the configuration of the snake
robot.
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The control theory generally leads to a nonholonomic system
m
g=Y uiXi(q), g €M,
i=1

where X; are vector fields on M, where m € N, m < dimM. In particular, the controllability of
the nonholonomic system is fully characterized by the properties of the Lie algebra generated
by X1, ...,X,,. We define

A' = span{Xj,...,X,,}
and AST! = AS 4+ [Al A%], where [A!,A%] = span{[X,Y] : X € Al,Y € A®}. The Lie algebra A
generated by X1, ..., X, is defined as
A=A

s>1

Let us note that our system satisfies Chow’s condition, i.e. A(g) = TyM,Vq € M and the vectors
at g € M form a flag of subspaces of T, M, that is

Al(q) cA*(g) C - C AT (g) C A (q) = TyM,

where r = r(p) is so—called degree of nonholonomy at p. Set n;(q) = dimAl(q). The r—tuple of
integers (n1(q),...,n/(q)) is called the growth vector at g. In our cases the growth vectors are

(4,5,7,8), (4,5,7,9), (4,5,7,10)

and the degree of nonholonomy is 4. The structure of the flag may also be described by another
sequence of integers. We define the weights at ¢, w; = wi(g), i = 1,...,m, by setting w; = s if
ns—1(q) < j < ng(q), where ng = 0. In our cases the weights are

(1,1,1,1,2,3,3,4), (1,1,1,1,2,3,3,4,4), (1,1,1,1,2,3,3,4,4,4).

As the first and the last link are endowed with the omnidirectional wheels and do not affect
the control, the controlling Lie algebra is of a special form, particularly it contains a two—
dimensional center 2. The flag structures on factor space A/ % are characterized by the growth
vectors

(2,3,5,6), (2,3,5,7), (2,3,5,8),

where the last example is of full dimension as the corresponding P. Hall basis contains exactly
8 elements. As a result, we discuss all possibilities with the degree of nonholonomy equal to 4
after the center factorisation.

4. KINEMATICS

Note that a fixed coordinate system (x, y) is attached. The points p; := (x;,y;), denote the centers
of mass of each link. To describe the robotic snake we use as a central object the set of point
pairs

(Po, Po Py -+, Py)
where Py = QoA Q1, PL = Q1 A Q> and Py = Oy A On+1, Where Q; are the joint points and head
and tail points. Consequently, the kinematic equations can be assessed and if we consider the
projections

VPR+PR _ VRP+R

i+1
eooPl " eoo'Pl

0=

we are able to express the coordinates of every point from any point pair. The coordinates of
particular position of link centers are the following

pi = PewP;, st. P;=Ra, - Ro,RoTcyPioT:yRoRao, - Ro,

1
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and, for the robotic snake initial position x =y = 8 = ®; = 0, the appropriate point pairs are
denoted by P, ¢ and calculated directly, e.g.

P1o=(eo) N (2e1 +2ew+e0) =2e0e; —2ee_,
P = (2e1 4 2ee +€0) N (de1 + 8ew +€0) = 2epe1 + 8eje — beye_,
P30 = (4e1 +8ew +e0) N (61 + 186w+ €0) = 2epe + 24€1 €00 — 10e e

Now, the transformations corresponding to the generalized coordinates can be written as

1
Toy=1- E(xel +ye2)ecw,

1
Tg, =1-5Qie,

0 . 0 .
Ry = cos 5~ Losin > where Ly = T, ye1e31y y,

P, P,
R; = cos — > —L;sin— > , where L; = Tp,e1exTp,.

The direct kinematics for the snake robot is obtained similarly as the kinematics for serial robot
arms [10]. In general, it is given by a succession of generalised rotations R; and it is valid for
all geometric objects, including point pairs. A point pair P in a general position is computed
from its initial position Py as follows

n n
2) P=TJRiP[JRn-is1.
i=1 i=1

5. DIFFERENTIAL KINEMATICS

Unlike the fixed serial robot arms, we allow R; to be also a translation. We view translations
as degenerate rotations. Then the differential kinematics is expressed by means of the total

differential as follows
n n n
dP = Z aqj (HRiPO HRn—i-H )dqj'.
=1 =1 i=1

Theorem 5.1. Let ¢ be a centre of a sphere S (including a point pair as a O0D—sphere) whose
final position is given by the kinematic chain (2). Then the differential kinematics of c is given
by

i [ L |dq;.
j=1

Proof. See [4]. Ol

Concretly, we obtain the system

P1 = [P1-e1ex)t+ [p1 - €2ew)y + [p1- Lo 6,
Pi = [p2-erex)i+ [pa-erew)y+ [pi-Lo)O + [pr- L)@y + -+ [p2 - L1]D;,

which in the matrix notation is of the form

(3) p=Jgq,
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where ¢ are our coordinates (1) and J = (ji;) is a matrix with the elements defined by scalar
products of points and axes

Jit = [pi-erew], jio = [pi-erew),

Jik = [pi- Li—3) for 3 < k < 3+,

Jixk=0for3+i<k.

As the wheels do not slip to the side direction, the velocity constraint condition is satisfied for
each link i and in terms of CGA can be written as

4) PiNPAew=0.

Thus if we substitute (3) in (4), we obtain a system of linear ODEs, which has a simple Pfaff
matrix form

where A = (a;;) is a matrix with the elements defined by
(6) ajx = jik NN\ €.

Note that the enteries of A are multiples of eje;ee_. Taking the conjugate and multiplying
with e3 A can be considered simply as a matrix over the field of functions. For example, the
solution of this system with respect to 6 parameterized by X,y, (i.e. X =¢; and y =1;) is of the
form

[P1-e1€w] NP N ew [P1-€2ew| NP N\ ews

1
[p1-Lo] APy A oo [p1-Lo] APy N oo

If we denote by e* the dual to e in CGA which is realized by the multiplication of the inverse
unit pseudoscalar, the straightforward computation leads to [p1 - Lo] A Pi A ew = 2€3, i.e. the

solution always exists, because ([p1 - Lo] AP Aew) ! = —3e.

The singular posture of the system is in the case that the wheel axes, i.e. lines perpendicular
to each link containing the link center point, intersect in precisely one point or are parallel, see
Figure 2. In our setting this is one condition only because in CGA the parallel lines intersect in
exactly one point which is e.. It is easy to see that this happens in such case that all joints lie
on a single circle, i.e. in CGA they satisfy a simple condition

7 QoAQIANQIANQ:i =0,  Vie{3,...N+1}.

Finally, note that the non—singular solution forms a 2—dimensional distribution which can be
parametrized e.g. as follows:

. ]
(8) q—G(tz),

where G = (g;;) is a control matrix. Thus if we consider the snake robot configuration space
with coordinates (1) as manifold M, the solution above forms a set of vector fields {g1, 22,83, 84},
such that g3, 84 € 2.

It is clear, that the space span{g;,g>} determines the set of accessible spatial velocity vectors
and thus, taking into account the vector field flows exp(rg;), exp(rg>), the possible trajectories
of the snake robot. On the other hand, due to non—commutativity of exp(rg;), exp(rg»), the
robot can move even along the flow of the Lie bracket by means of the composition

exp(—rga) oexp(—tgy) oexp(tgz) oexp(tgy).

Extending this idea, the space D, of all movement directions at the point g is given by all possi-
ble Lie brackets of g1(g) and g»(¢) and the resulting vector fields. From the geometric control
theory point of view, it is quite necessary that the dimension of D is equal to the dimension of
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the tangent space T,M,q € M, which in our case is 6,7 and 8, respectively. Note that this is the
condition on the model local controllability given by the Rashevsky—Chow Theorem.

6. NOTES ON THE INVERSE KINEMATICS

Note that the geometric meaning of the inner product of two conformal vectors U and V is the
following.

TABLE 1. Geometric meaning of the inner product

U-V | Plane Sphere Point

Plane | Angle between planes Euclidean distance from center | Euclidean distance
Sphere | Euclidean distance from center | Distance measure Distance measure
point | Euclidean distance Distance measure Euclidean distance

In our case, we have the set of point pairs {F,...,Py} which determines the mechanism
configuration uniquely. Using the notation of Section 4, the set of the admissible points
{Qo,...,0On+1} with respect the set of point pairs {P,, ..., Py} has to satisfy the equations

) Qi-Qir1= 2,

where i € {0,...,N}. A point in the configuration space M is determined by the following
direct computation:

x=(Qo-ey,

y=0o- e,
cosO = (Pl New) (e Nep New),
cos @ = (P A\ ew) (Pry1 N ew).

Various inverse problems can be solved by these equitations. For instance assume the position
of the first and the last link is fixed (as it does not affect the control process) and all possible
resulting configurations are computed. We shall use the property of the scalar product of a
point Q and a sphere S that the number /2|Q - S| determines the Euclidean distance of Q and
the point of tangency on S appropriate to the tangent containing Q. To avoid the singular initial
positions we suggest to employ the assumption for small € € R

2—e<Q;i (Qitr—2ex) <2+¢,
which reads that the angel ¢; is in the vicinity of 7 or less restrictive assumption
sgn((PiAee) - (Pipi New)) = —sgn((Pi/ ew) - (Piy1 N ew))

which reads that the angle signum is changing in each joint.
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ABSTRACT. A new general method of computational electromagnetism based on extremizing
the electromagnetic action using the geometric algebra of space-time is described. Special cases
include a boundary element method and a finite element method. These methods are derived
and discussed, and compared with the well known Method of Moments and Finite Difference
Time Domain method.

INTRODUCTION

Computational electromagnetism is the application of computational methods to simulate elec-
tromagnetic fields. Although this is a well developed field [4], this development has been
constrained by the use of 3D vector algebra and calculus. Although Hestenes described the use
in electrodynamics of the geometric algebra of space-time [1] in the same decade that com-
putational electromagnetism began to receive significant attention by applied physicists and
electronic engineers [3], there has been little awareness of geometric algebra by researchers in
this field.

This paper describes an application of the geometric algebra of space-time to computational
electromagnetism first described in [6], starting with the Lagrangian and Hamilton’s principle
[2]. The result is a short development of simple but heretofor unused fundamental equations
useful in computational electromagnetism, that result in methods that are similar to but signifi-
cantly different from methods commonly used today.

The new methods described here are similar to, but simpler and with advantages over, two pop-
ular and well studied methods: the Method of Moments and various Finite Element methods.
These new methods are described below and compared with the popular methods.

1. LEAST ACTION WITH BOUNDARIES

This section reviews the application of Lagrangian techniques to electromagnetism, with the
addition of integrals over boundaries on which normal derivatives of the potential may be dis-
continuous. These boundary integrals are crucial in the next section where these results are
modified to apply to computational electromagnetism.

We begin by considering variation 0 of the electromagnetic action,
(1) 5/L[A,vA]d4x:0

under all possible variations 6A of a continuous space-time vector potential A.
We use the electromagnetic Lagrangian
(2) LIA,VAl=(1/2)FxF+U[F|—A-J

where F' = V A A, the interaction energy U|[F] of the polarizable medium in the field also de-
pends on the 4-velocity and polarizability of the medium, and the free charged current density
J is specified, not varied, in this example.
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2 COMPUTATIONAL ELECTROMAGNETISM BY THE METHOD OF LEAST ACTION

After an integration by parts, we obtain

(3) /5A-(v-G—J)d4x:o
where
4) G =F +0rU[F]

Since this is true for any variation 6A of A, the term in parenthesis must equal zero at all points
of space-time which gives us the Euler-Lagrange equation (i.e., Maxwell’s inhomogeneous
equation):

) V-G—J=0

If derivatives of A, and therefore F' and G, are discontinuous across boundary points — possibly
because the medium polarizabity is discontinuous across a boundary or because we have simply
chosen basis potentials that have discontinuous derivatives across boundary points — instead
of (3) we obtain

(6) /VSA-(V-G—J)d4x+/55A~(n-AG—K)d3x:0

where the first integral is over space-time volume V excluding boundary points, and the second
integral is over space-time boundaries or surfaces S across which derivatives of A may be dis-
continuous, with change in G across the boundary denoted by AG, a unit vector normal to the
boundary by n, and the boundary charged current density by K. Each term in parentheses must
be zero, which gives us Maxwell’s inhomogeneous equation

(7 V-G—J=0
and the usual associated boundary condition
(8) n-AG—K=0

2. COMPUTATIONAL LEAST ACTION

For the numerical work we’re interested in, we set the space-time vector potential A equal to a
sum of basis functions a;[x] of space-time position x times coefficients c;,

) A = ajc;

with a corresponding expression for F = fic; where f; = V A a;. Note that although G = G[f;c/],
in the general case of nonlinear G[F|, G # G|f;]c;. We consider only variations of A that we can
represent by variations d¢; of the coefficients ¢;: that is, A = a;0¢;. Since any set of values of
variations Oc; is allowed, equation (6) then becomes equivalent to the set of equations

(10) /a,'-(V-G—J)d4x+/sa,--(n-AG—K)d3x:0
%

indexed by i. This set of equation determines the coeffcients c; that extremize the action via
their expression in G|fjc;]. If U is bilinear in V AA, then G = g jc; with g; = G[f}], and therefore
these equations are linear in the ¢; and so can be easily solved for the c;.

These equations are especially useful in computational applications if the integrals over vol-
umes V are identically zero because we then have to compute integrals over only boundaries or
surfaces S. We therefore consider choosing a set of basis functions a; such that for any set of
coefficient values c;, the first term in parenthesis, and therefore the first integral, is identically
zero. With such a choice of basis functions, we extremize the action by choosing coefficients
¢; such that

(11) /a,--(n-AG—K)cﬁx:o
S

This is the main equation used by the methods described in this paper.
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COMPUTATIONAL ELECTROMAGNETISM BY THE METHOD OF LEAST ACTION 3

Signs in (11) can be confusing with space-time’s mixed signature. This may be clarified by us-
ing a local orthonormal frame {e, e, e,e3} with three frame vectors tangential to the bound-
ary, and replacing the symbol » for the normal vector with that of the reciprocal frame vector
¢" normal to the boundary for some n € {0,1,2,3}. Then

(12) V-Gd*x = (e%eq - V) Gdx'dx' dx dx"

where a is summed over {0, 1,2,3} and {k,l,m,n} is some permutation of {0,1,2,3}. For a
boundary of thickness dx" with G changing linearly across the boundary and negligible rates of
change tangential to the boundary, we can replace the sum over o with the single index n:

dx" dx"
(13) V-Gd*x=e"- (dx" 0wG)dx’ dx' dx™ = ¢" - (Gx+ Ten] —Glx— %en])dxkdxl dx"

(14) =" AGd’x

This shows that V - Gd*x is independent of the choice of sign of e, since e, -e¢" = 1 implies
that if the sign of e, is changed, the sign of ¢”" is, too; but it also shows that the overall sign is
different for parts of a boundary with time-like versus space-like normal vectors e, and e”.

Two especially useful methods of choosing a set of basis functions such that V-G —J = 0 for
any choice of coefficient values c; are described briefly below, and in greater detail in following
sections.

2.1. Regions of uniform linear polarizability. If the medium is linearly polarizable with dis-
continuous polarizability across boundaries and uniform polarizability within each region en-
closed by a boundary, then G[F]| is a linear function of F = V A A so that G = g;c; where
gi = G[fi] and fi = V Aa;. In this case we choose basis functions a; = a;[x] that are defined
by their values at boundary points plus the requirement that they satisfy an appropriate Euler-
Lagrange equation at all non-boundary points: We may choose one basis function, say ag, to
satisfy V - go —J = 0 and choose all other basis functions, a; for i # 0, to satisfy V-g; =0,
so that V - G = J identically at all non-boundary points for any choice of basis coefficients c;.
The value of any basis function may be found at any non-boundary point from these bound-
ary values by using Green’s 3rd Identity as detailed in a later section. Application of (11) to
solve for the solution coefficients c; then results in a boundary element method that is similar
to, but quite different from, the well established Method of Moments used in computational
electrodynamics.

2.2. Regions of nonlinear polarizability. If G is not a linear function of ¥ =V A A in one or
more regions of space-time, we may divide each region of interest into contiguous 4-simplices
(tetrahedrons are 3-simplices, triangles 2-simplices) that share adjacent faces - that is, into a
simplicial complex - and choose A = Ax] to be a linear function of position x at all points within
each simplex, so that F' is constant within each simplex and V - G is therefore zero. For example,
we may choose each a; = a;[x] to be linear in position x within each simplex and set it equal to
a nonzero parameter at one vertex of the simplices and zero at every other vertex. We may also
approximate any charged current volume density inside a simplex with a corresponding charged
current surface density K on faces of the simplices and set J = 0 within 4-simplices. The only
contribution to the integral for extremizing the action is then from the boundaries between the
simplices, that is, the faces of the simplices. This results in a set of difference equations that
are analogous to, but different from, equations used by conventional Finite Difference Time
Domain methods. Because of the simple structure of these difference equations, they are easy
to use and analyze and may be more accurate for comparable computation time. For example,
the points defining the simplices need not be in any regular array but can be quite irregularly
placed in space-time, as long as a simplical complex can be drawn between them that covers
the region of interest.
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4 COMPUTATIONAL ELECTROMAGNETISM BY THE METHOD OF LEAST ACTION

With an interaction term in the Lagrangian representing magnetic hysteresis, possibly using a
statistical mechanical model, method 2.2 may also be useful for nonlinear magnetic media with
hysteresis.

These two methods 2.1 and 2.2 may be used in the same problem: for example, a region
containing nonlinear magnetic media may be treated with method 2.2, while linearly polarizable
or empty space outside of this region may be treated with method 2.1.

Variations include simplified equations for situations with symmetries, such as translation or
rotational symmetry of the polarizability, and harmonic time variation in a chosen frame.

3. UNIFORM LINEAR POLARIZABILITY

This section develops in greater detail the special case of section 2.1 above: space-time filled
with bounded regions, each filled with media having uniform polarizability that is a linear
function of the field F. In practice we first compute “medium quantities” such as A,,, J,,, and
G,, instead of corresponding “’physical quantities” A, J, and G, as outlined in a later section,
but for notational simplicity we omit the subscript m in this and other sections.

We restrict analysis to the simple case of harmonically varying electromagnetic quantities in a
rest frame identified by a 4-velocity ¥ in which all media and boundaries are stationary. For
convenience, we represent harmonic variation in this rest frame with the real or imaginary parts
of complex quantities including both scalars and space-time vectors. Space-time vectors are
represented by non-bold type such as x and V, and relative 3D space vectors by bold type such
asx=xA7Y and V = % A V. Then the space-time vector potential A, for example, may be given
as the space-time vector valued function A = Re[A[X]Exp[—iot]] of X =x Ay and t = x- Y,
with the Re]...| function and Exp]|...] factor implied in most algebra.

Our goal is to be able to quickly calculate the electromagnetic field F at any point of space-time
that contains i) any number of stationary physical objects of any shape, each made of a material
with uniform electric and magnetic polarizability and electrical conductivity of any values as
long as they are linear functions of the field, and ii) any specified charged current density J
oscillating at any specified frequency @. This can be done using Greens 3rd Identity

15)  AK]= /S (Vo @ [x—X]A[X] — 0[x — X'|Vn A[X]) dx + /V o[x — X'J[x] d*x

where an acceptable Green’s function is

(16) ¢[X] Explik|X]]

 4mlX|
with medium wavenumber £, given the potential A and its directional derivative V, A normal to
the boundary at all boundary points. The goal of the method in this case is therefore to calculate
an acceptable approximation to these quantities A and V, A on the boundary.

The method calculates these boundary quantities for the final solution in two steps:

1) Basis potential functions a; are first chosen so that A = a;c; extremizes the integral of the
Lagrangian over non-boundary points for any choice of coefficients c;, but does not, generally,
extremize the integral of the Lagrangian over boundary points. This results in basis functions,
each one a function defined at every point of every region in space (although characterized and
uniquely identified by values at only boundary points), such that A satisfies the Euler-Lagrange
equation within each region but not across the boundaries between regions.

i1) The particular set of coefficient values c; that extremizes the integral of the Lagrangian over
all boundary point is then chosen; that is, that satisfies equation (11). The linear combinations
a;c; and V,a;c; then give the desired boundary quantities A and V,A .

Details of these steps follow.
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3.1. Choice of Basis Functions. The first step, choosing basis potential functions a; that ex-
tremize the integral of the Lagrangian over all non-boundary points, is performed as follows.

Extremizing the integral of the Lagrangian over region points is equivalent to choosing func-
tions that satisfy the Euler-Lagrange equation (Maxwell’s inhomogeneous equations for the
electromagnetic Lagrangian) at all region points. This Euler-Lagrange equation has a ’gauge
freedom” - it is independent of V - A - that we conveniently eliminate by also requiring that the
Lorenz condition is satisfied. With the Lorenz condition, the Euler-Lagrange equation reduces
to the simpler wave equation, so we choose basis functions a; that satisfy the wave equation
and the Lorenz condition.

A unique solution to any 2nd-order differential equation, including the wave equation, in any
region enclosed by a boundary, is identified by specifying the value of the solution at every point
on the boundary (Dirichlet boundary conditions), the normal derivative of the solution at every
pint on the boundary (Neuman boundary conditions), or some combination of value and normal
derivative (mixed boundary conditions). In this case of a space-time vector valued function such
as an electromagnetic potential a;, we have 4 degrees of freedom for each the value and normal
derivative, for a total of 8 degrees of freedom at each point of the boundary; we must specify
the vector value of the function (Dirichlet), its vector-valued normal derivative (Neuman), or
some combination totaling 4 degree of freedom (mixed) at each point to uniquely specify a
solution. We choose to specify mixed boundary conditions: the three space-time tangential
components nn A a; of the potential a; (equal to the two components of the 3D vector potential
that are tangential to the 2D boundary, and the scalar potential) and the normal component
nn-(V,a;) of the normal derivative V,a; = n- Va; at every point on the boundary. These
boundary conditions identify a unique solution to the wave equation.

But further, we choose nn - (v, a;) to satisfy the Lorenz condition, 0 = V - a;, on the boundary:
The divergence may be expanded to rewrite the Lorenz condition as 0 = (nn-V)(nn-a;) +
(nn A V)(nnAa;), then multiplying this by n on the left and using the notation V, =n-V,
we have nn- (V,a;) = —(n A V)(nnAa;). This choice of nn-(V,a;) ensures that the Lorenz
condition is satisfied at all boundary points. This, along with a; satisfying the wave equation
v2a; = 0 at all points enclosed by the boundary, guarantees that g, satisfies the Lorenz condition
at all points enclosed by the boundary: Taking the divergence of V2a; = 0 gives vz(v -a;) =0,
so V -q; satisfies the wave equation with the boundary condition that it equals 0, which has the
unique solution V - a; = 0 everywhere.

We now have shown that a solution a; that satisfies the wave equation and the Lorenz condition
is uniquely and exactly specified by our choice of just the three tangential components nn A a;
of a; at all boundary points. We also can immediately calculate the one normal component
nn-(Va;) of V,a; at all boundary points by applying the Lorenz condition. But we need all 4
components of g; and all 4 component of V, a; on the boundary in order to apply Green’s 3rd
Identity to calculate the potential @; at any point in the region enclosed by the boundary. We
find the 4 still-unknown components as follows.

We define good approximations to the desired boundary functions nn-a; and nn A (V,a;) by
choosing functional forms that depend on a finite number of parameters, and then use Green’s
3rd Identity to write constraints on the parameters that determine their values.

For example, we might cover the boundary with triangular patches having a total of V vertices,
and for each component, choose the functional form to be a simple linear function of position
on each triangle, with parameters given by the values of nn-a; and nn A (V, a;) at the vertices
of the triangles. Then we apply Green’s 3rd Identity to each vertex, resulting in V space-time
vector equations that can be solved for the 4V degrees of freedom of nn-a; and nn A (v, a;) at
the V vertices.
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6 COMPUTATIONAL ELECTROMAGNETISM BY THE METHOD OF LEAST ACTION

This simple example for functional forms results in electromagnetic basis fields f; = V A q;
that may be discontinuous at the boundaries between patches. These discontinuities can be
removed by using smooth, though more complex, functional forms for the boundary and for
the potential, such as by using Bezier techniques.

In summary, we do the following for each basis function a;:

a) We specify the 3 space-time vector boundary components nn A a; (given in the rest frame of
the boundary by the two 3D vector potential components that are tangential to the 2D bound-
ary, and the scalar potential) exactly at every boundary point (typically by a parameterized
boundary potential function with any desired number of parameters), then calculate the value
of nn-(V,a;) exactly at every boundary point on both sides of the boundary from the specified
boundary components using the Lorenz condition. These values exactly determine the corre-
sponding solution that satisfies both the wave equation and the Lorenz condition throughout the
region enclosed by the boundary.

b) Although this determines the exact potential a; at all enclosed points, we cannot easily
calculate values at arbitrary points enclosed by the boundary until we also have values of the
remaining 4 boundary components nn-a; and nn A (V,a;). We find approximate values of
these components by representing them with 4V parameterized functions and then determining
optimal values of the parameters by choosing them so that each of the 4 components of Green’s
3rd Identity is exactly satisfied at V boundary points. This is most easily done using the media
quantities A,, and n- V,, defined in a later section, instead of A and n-V = V,,.

3.2. Continuity of the Normal Component of the Potential. For potentials defined in this
way, the normal component of each basis potential, nn - a;, will generally be discontinuous
across a boundary, while a fundamental physical assumption is that the potential is continuous
everywhere in space-time. This section shows that this discontinuity can always be removed by
choosing a different gauge; but knowing this, we conclude that we should continue using the
original gauge because of its computational simplicity.

To remove the discontinuity in nn - a;, we can perform a gauge transformation to a} = a; + V;
for the potential on one side of the boundary, with J;[x] at each boundary point x chosen so that
n-Vyxi = —n-aj, resulting in n-a; = 0 at all boundary points x. Then, in order for the tangential
components of a} to remain continuous, we ensure that nn A Vy; = 0 at the boundary by setting
xi = 0 on the boundary. We choose y; to be any function J;[x] that satisfies these two boundary
requirements, and then choose the gauge condition V - a; = V2}; for our new potential a.

All components of this potential a; are continuous at all points, and a. results in the same field
f = f!since VA Vy; =0. However, a; will generally be more difficult to compute because of its
gauge condition, so we continue use the potential a; with its discontinuous normal component
but simple Lorenz gauge condition, knowing that it is equivalent - at least for non-quantum
applications - to a continuous physical potential.

3.3. Choice of Linear Combination of Basis Functions. At this point we have a simple com-
putable expression for each potential basis function a;[x| and its normal derivative V,a;[x] at
every boundary point x. From this we can immediately calculate the corresponding basis field
gilx] as a linear function of the corresponding basis field f; = V A q; at any boundary point, on
either side. Note that even though the normal component of a; can be made continuous by a
different choice of gauge, all components of the normal derivative of a; are generally different
on the two sides of a boundary separating regions with different polarizabilities.

We now extremize the action boundary integral under variation of the coefficients in the linear
combination of basis functions by solving the set of linear equations

(17) /ai-(n-Agj)d3xcj:/ai-Kd3x
S S
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indexed by i, each with a sum over j. This is a matter of simply evaluating the boundary
integrals and solving the resulting set of linear equations for the c;, allowing us to write the
solution A[x] = a;[x]c; and F[x| = fi[X]c;.

Although derivation and algebraic manipulation of the basic equations is generally easier using
space-time algebra, seeing these equations in terms of electric and magnetic fields in the rest
frame of the medium is helpful for practical considerations:

(18) /S((p,-(n- Ad;) —a;- (nx Ah;))cjd*x = /S(¢,~0' —a;-K)d%x

where the integral is over all points of the 3D boundary, which in this case of stationary bound-
aries and harmonic oscillation in the rest frame of the boundary, is a 2D boundary in 3D space
that is swept uniformly through time.

3.4. Implementation Details. This section describes some algebraic and computational de-
tails that are useful for implementation.

3.4.1. Functions specifying boundaries and potentials on boundaries. To avoid singularities in
computational electromagnetism, we generally need smooth boundaries; that is, normal vectors
to the boundary must be continuous. To avoid discontinuities in the fields F' and G, the potential
A must also be have continuous first derivatives. Bezier techniques [5], especially representa-
tions of triangular patches, turn out to be very useful and convenient for both representation of
boundaries and of potentials and fields.

Perhaps the simplest approximate representation of a boundary is a covering of flat triangles,
although this has normals that are discontinuous across triangle edges. Similarly simple pa-
rameterized functions to represent values of the potential and of the normal derivative of the
potential on such a boundary are also linear functions of position on each triangle. We know
that the physical field F near such edges diverges, corresponding a diverging value of the nor-
mal derivative of the potential near edges, so approximation of these normal derivatives V,a;
on the boundary with linear functions is expected to result in some numerical error, and up to a
few percent discrepancy is observed between the parameterized potential value on the boundary
and the potential value at a boundary point calculated from all boundary values using Green’s
Third Identity.

Quantitative results for a simple application of this is given in Figures 1 through 4 below,
showing the total electric and magnetic fields near an icosahedron filled with a medium having
permittivity &, = 1 + 3i and permeability u,, = 3, while a magnetic dipole approximately 10
radii to the right is oscillating with a frequency @ = 0.1 resulting in radiation from the right
with a wavelength of about 63 radii. The plane of the page is tangential to the dipole axis in
Figures 1 and 2 depicting the magnetic field B, and perpendicular to the dipole axis in Figures
3 and 4 depicting the electric field E. The scale of vector lengths differs between figures.

These linear functions are in fact the simplest Bezier representations. Higher order Bezier
representations of a continuous boundary with specified vertices and boundary normals of tri-
angular patches can be created fairly easily; with slightly more work, continuous normals all
along each edge can be specified and described. Potentials can be similarly specified, resulting
in smooth boundaries and smooth first derivatives of the potential.

3.4.2. Media Quantities. In polarizable media, all quantities and equations become more com-
plex because the charged current J includes induced J that depends on the field. But in the case
of media with polarization that is linear in the field, we can write linear transformations of the
relative vector and scalar of the potential A and of the vector derivative V in the rest frame of
the medium, such that all equations have the same form as those in vacuum but with different
constants.
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FIGURE 3. Real part of E field FIGURE 4. Imaginary part of E field

Space-time vector quantities such as A are related to scalar and 3D space relative scalars and
vectors in a frame with 4-velocity ¥%. We write these to give our notation for free space or
nonpolarizable media for which the total charged current density J equals the free charged
current density J:

(19) Jr=(pr+J)10
(20) A=(0+A)N
21 V=(—-V)n
(22) VANA=F=E+IB

In polarizable media, the total charged current is the sum of free and bound parts, J = J7 +Jj,
expressed as the divergence of a space-time polarization bivector P, where P itself is expressible
in terms of an electric space vector polarization Pr and magnetic space vector polarization Py,
in the medium rest frame identified by Jp,

(23) bh=V-P=(pp+Ip)00=(=V-Pe+ P —IVAPy)Y
where
(24) P=P-%0+PANwy=Pr—IPy
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and we also define the field
(25) G=(E+Pg)+I(B—Py)=D+IH

With linearly polarizable media m having pemittivity &, permeability (,,, and phase velocity
Vim = 1//€nlim, the total charged current J = J +J, is equal to the sum of free charged current
Jr and bound charged current Jj, induced in the polarizable media. We refer to the quantitties
above as “physical” quantities Q, and define "media” quantities Q,, with relative 3D vectors
and scalars related to those of the physical quantities Q by

1
(26) In = Pm+In) W0 = (pf+v_Jf)70
m
11
(27) A = (P +Am)W = (End +——A)Y0
Vin Wi
1
(28) V= (3m—Vm)?’o = (v—ao—v)?’o
m
11
(29) Gn=VpyN Ay =6,E+1——B
Vi W
With these definitions, we can rewrite the Euler-Lagrange and Lorenz condition equations as
(30) Vi Gmn—Im =0
(31 n-AG, —K, =0
(32) VimAn =0

Equations that apply to electromagnetism in vacuum then also apply to electromagnetism in
linearly polarizable media, with quantities Q replaced by Q,,. For example, Green’s 3rd Identity
can be applied in polarizable media with this replacement to find the media potential at any
point in a linearly polarizable region enclosed by a boundary, and the resulting media potential
transformed back to the physical potential.

The general method of using media quantities is that we refer to the physical potential A on
boundaries, but for regions enclosed by boundaries we calculate the corresponding value of
the media potential A,, on the boundary (which is generally different for the two sides of the
boundary at each boundary point) and then use A,, on the boundary in Green’s 3rd Identity to
find the A,, at any point in the enclosed region. We may then use A,, at neighboring points to
numerically calculate the derivative G, or alternatively, we may calculate G,, at every point on
the boundary and used Green’s 3rd Identity for the field to calculate G, at any enclosed point.

For notational simplicity, we generally omit the subscript m, with its presence implied as nec-
essary by context.

Numerical and graphical results will be presented for some examples of solutions using this
method for bounded regions of uniform linear polarizability.

4. NONLINEAR POLARIZABILTY

This section sketches more details of the method of section 2.2: some or all of space-time
divided into simplices with the potential being a linear function of position within each simplex
and the media possibly having nonlinear polarizability.

In this case, unlike the situation of section 2.1 for which we assume that all quantities vary
harmonically with time and so choose the boundary to be tangential to the world line of the
rest frame, we cover part of space-time with simplices that necessarily have faces that are not
perpendicular to the world line of the rest frame of the medium. Nevertheless, for computation
we still will choose the rest frame to define and evaluate scalar quantities to store in computer
memory, so we would like to express equation (11) with the basis potentials a;, the boundary
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normals 7, and the change in field AG, in terms of quantities naturally defined and specified in
the rest frame of the medium characterized by Y.

To do this we express these quantities in terms of relative scalars and vectors:

(33) a;i = (i +a;)%

(34) n=(no+mn)y

(35) AG=AD+1AH

(36) K=(c+K)pn

Then equation (11) becomes

(37) / ((aimo — ¢m) - AD — a;- (n x AH)) dx = / (¢i0 — a;-K) d’x
S S

which is a set of equations indexed by i, to be solved for the unknown basis function coeffcients
¢; that define F = fic; and therefore the function G = D +IH of F. We choose each potential
basis function a; to be very localized, equal to some non-zero parameter at one simplex vertex,
zero at every other simplex vertex, and linear within each simplex. This equation is then very
local, and the system of equations may be solved by, for example, specifying boundary condi-
tions over all of space at two adjacent times, and then choosing coefficients c; to satisfy these
equations, one set of coupled equations on a space-like set of points at a time.

5. COMPARISON WITH OTHER FINITE ELEMENT METHODS

Comparison of these methods with conventional methods used in computation electromagnet-
ics is difficult because although the goals are similar, the theoretical starting points are very
different. A few remarks are made here.

In particular, although discussion of variational methods and derivation of practical methods
from them are common [4], the starting point of such treatments is generally Maxwell’s 4
equations written using relative 3D vectors and scalars and 3D vector algebra. Maxwell’s two
equations containing time derivatives - one being part of the Equler-Lagrange equations, the
other being the result of the mathematical identity V A F = 0O - are then combined to give a
2nd order equation for either the electric field E or magnetic field B. This is then used to
construct an integral whose variation - typically with respect to E or B, not A - gives this desired
second order differential equation. This method is oriented toward using general mathematical
methods for solving differential equations rather than exploiting the fact that a Lagrangian and
action already exist. It becomes quite complicated, and does not have advantages of an action
formulation such as the existence of Noether’s theorems and associated symmetries.

The method of least action described in this paper is both much simpler and more general,
has the benefits of expression not tied to a Cartesian or any other coordinate system, better
represents the actual structure of space and time which is so fundamental to electromagnetism,
and exploits the exceptional fit between geometric algebra and electrodynamics.
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Abstract

In this paper we give a Clifford bundle motivated approach to the wave equation of a free
spin 1/2 fermion in the de Sitter manifold, a brane with topology M = S0(4, 1)/S0(3, 1) living
in the bulk spacetime R*! = (M = R5, §) and equipped with a metric field g := —3*§ with
i: M — M being the inclusion map. To obtain the analog of Dirac equation in Minkowski
spacetime in the structure M we appropriately factorize the two Casimir invariants C; and
C5 of the Lie algebra of the de Sitter group using the constraint given in the linearization
of C5 as input to linearize C. In this way we obtain an equation that we called DHESS1.
Next we derive a wave equation (called DHESS2) for a free spin 1/2 fermion in the de
Sitter manifold using a heuristic argument permitting a derivation of the Dirac equation
in Minkowski spacetime and which shows that such famous equation express nothing more
than the fact that the momentum of a free particle is a constant vector field over timelike
integral curves of a given velocity field. It is a remarkable fact that DHESS1 and DHESS2
coincide. One of the main ingredients in our paper is the use of the concept of Dirac-Hestenes
spinor fields.

Keywords: de Sitter Manifold, Clifford Bundle, Dirac Equation.

1 Introduction

The Dirac equation (DE) in a Minkowski spacetime can be obtained using Dirac’s original
procedure through a linearization of C¥ —m? = 0 (where C7 is the first Casimir invariant of the
enveloping algebra of the Poincaré group) and its application to covariant spinor fields (sections
of PSPinT,s X4 C*). Using the Clifford and spin-Clifford bundles formalism! and an almost trivial
heuristic argument we present a derivation of an equivalent equation to DE which is called
the Dirac-Hestenes equation (DHE). Our derivation makes clear the fact that the DE (or the
equivalent DHE) express nothing more than the fact that a free spin 1/2 particle moves with
a constant velocity in Minkowski spacetime following an integral line of a well defined velocity

'This means the Clifford and spin-Clifford bundles formalism as developed in [14]. We use the notations of
that book and the reader is invited to consult the book if he needs to improve his knowledge in order to be able
to follow all calculations of the present article.
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field. This observation is a crucial one for the main objective of this paper, the one of writing
wave equations for a free spin 1/2 moving in a de Sitter manifold equipped with a metric field
inherited from a bulk spacetime R*! (see Section 2). It is intuitive (given the topology of the de
Sitter manifold) that such a motion must happen with a constant angular momentum? and as
we will see a heuristic deduction of a Dirac-Hestenes like equation in this case results identical
from the one which we get if we linearize C; — m? = 0 (where C] is the first Casimir invariant
of the enveloping algebra of the Lie algebra of the de Sitter group) taking into account a a
constraint coming from the linearization of C5, the second Casimir invariant of the enveloping
algebra of the Lie algebra of the de Sitter group

To be more precise, in Sections 3 and 4 we will present two Dirac-Hestenes like equations
for a spin 1/2 fermion field® ¢ living in de Sitter manifold equipped with a metric field g (see
Section 2), which will be abbreviate as DHESS1 and DHESS2. The DHESS1 will be obtained
by linearizing the first Casimir operator C; using a constraint imposed on the DHSF arising
from the linearization of Cs. On the other hand DHESS2 will be obtained by a physically
and heuristically derivation resulting by simply imposing that the motion of a free particle in
the de Sitter manifold is described by a constant angular momentum 2-form as seem by an
hypothetical observer living in the bulk spacetime R*!. Of course, as we are going to see the
heuristic derivation is only possible using the Clifford bundle formalism. It is a remarkable
result that DHESS1 and DHESS2 coincide and moreover translation of those equations in
the covariant spinor field formalism gives a first order partial differential equation (which is
equivalent to the one first postulated by Dirac [4]). It will be shown that DHESS1 (and
thus DHESS2) reduces to the Dirac-Hestenes equation (DHE) in Minkowski spacetime when
{ — 0o, where £ is the radius of the de Sitter manifold.

In Section 5 we study the limit of DHESS1 and DHESS2 when ¢ — oo (¢ being the
radius of the de Sitter manifold)showing that it gives the Dirac-Hestenes equation in Minkowski
spacetime.

In Section 6 we present our conclusions.

2 The Lorentzian de Sitter M’ Structure and its (Projective)
Conformal Representation

Let SO(4,1) and SO(3,1) be respectively the special pseudo-orthogonal groups in vector man-
ifolds R*! = {M ~ R® g} and in R®»! = {R* —n} where § is a metric of signature (4,1) and
1 a metric of signature (1, 3). The manifold M = SO(4,1)/SO(3,1) will be called the de Sitter
manifold. Since

M = S0(4,1)/50(3,1) =~ SO(1,4)/SO(1,3) ~ RxS3 (1)

this manifold can be viewed as a brane [10] (a submanifold) in the structure R*!. In General
Relativity studies it is introduced a Lorentzian spacetime, i.e., the structure ML = (M =
RXS3,g,D,Tg,T) which will be called Lorentzian de Sitter spacetime structure* where if ¢ :
RxS? — RS is the inclusion mapping, g := —*§ and D is the parallel projection on M of the
pseudo Euclidian metric compatible connection in R*! (details in [?]). As well known, ML is a
spacetime of constant Riemannian curvature. It has ten Killing vector fields. The Killing vector
fields are the generators of infinitesimal actions of the group SO(4, 1) (called the de Sitter group)
in M = RxS3 ~ SO(4,1)/SO(3,1). The group SO(4, 1) acts transitively® in SO(4,1)/SO(3,1),
which is thus a homogeneous space (for SO(4, 1)).

20n this respect see also section XIV.3 of [1].

3Called in what follows a Dirac-Hestnes spinor field and denoted DHSF.

41t is a vacuum solution of Einstein equation with a cosmological constant term. We are not going to use this
structure in this paper.

A group G of transformations in a manifold M (o : Gx M — M by (g,x) +— o(g,z)) is said to act transitively
on M if for arbitraries z,y € M there exists g € G such that o(g,z) = y.
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We now give a description of the manifold Rx.S® as a pseudo-sphere (a submanifold) of
radius [ of the pseudo Euclidean space R*! = {R%, g}. If (X!, X2, X3, X%, X°) are the global
orthogonal coordinates of R%!, then the equation representing the pseudo sphere is

(X 4+ (X2 4 (X3)2 4 (X2 = (X0)2 = 22 )

Introducing projective conformal coordinates {z*} by projecting the points of RxS? from
the “north-pole” to a plane tangent to the “south pole” we see immediately that {z#} covers
all RxS? except the “north-pole”. We have

2
XM =Qat, X4 =10 (1 + Z@> (3)
g:=—L"g= Qan,da:“ ® dz”, (4)
o2\ !
Q:Q‘w)va%mMﬂ (5)

and the matrix with entries 7, is the diagonal matrix diag(1, —1,—1,—1).

3 Linearization of the Casimir Invariants of the spinj,; Lie alge-
bra
The classical angular momentum biform of a free particle following a “timelike” curve o with

momentum 1-form p in M =R4! g
l==zAp, (6)

x:=X"E,, p-= PAEA (7)
o A
are respectively the position 1-form and the momentum of the free particle. Moreovoer, {E =
dX4} is an orthonormal cobasis of T*M dual to the orthonormal basis {é4 = (,;JXLA} of TM.
and {E4} is an orthonormal cobasis of T*M, called the reciprocal basis of {E’A} and it is
oA o

g(E",Ep) = &5 whereS

g=n""ésép (8)
is the metric for T*M. If

. A B

g=naplE QF 9)
is the metric of TM, it is n%ncp = 5]@,. We have

B

1 ea en 1. oA
l:§LABEA/\E ziLABEAEB (10)

Lag =nacX Pp — npcX“Pa (11)

Remark 1 It is quite obvious that for a classical particle living in de Sitter spacetime and
following a timelike worldline o parametrized by propertime T if we write

dXA(7) -

z=XY1E,, p=m Ey (12)
dr
it is (since  + x = §(x,x) = (?)
xz-p=0. (13)
Thus,
Tp=xA\p (14)

5The matrix with entries nap is the diagonal matrix diag(1,1,1,1,—1)
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and as a consequence

1? = xpxp = —prxp = —(*p? (15)

which implies that
INL=0 (16)
1 =1.l. (17)

As we re going to see the classical condition given by Eq.(16) cannot be assumed in quantum
theory where the classical angular momentum is substituted by a quantum angular momentum
operator.

So, to continue we define 7—0[, the Hilbert space of a one quantum spin 1/2 particle living M
as the set of all square integrable mappings’

¢ € secCLO(M, g) (18)

called representatives in C£°(M, g) relative to a spin coframe of (DHSF) [7].

o

The quantum angular momentum operator L € L(H) is

L:— %E“AEBLAB (19)
Lap =14cX“Pp —npcX°P4 (20)
with P4 € £(H) defined by
Pu¢ = OuoE E' (21)
Now?,
L’=L.L+LAL. (22)

L_L is clearly a scalar invariant under the action of Spinj ; group and it is:

1
L.L = —§LABLAB. (23)

The first Casimir operator of the Lie algebra sping ; is defined by

1 1 1
01 = €—2L_|L = —EL -L=- TKQLABLAB = m2a (24)

with m2 € R. We have the

Proposition 2 Call

1 1
Then,
1
1

Remark 3 The second Casimir invariant of sping y is defined by
1
CQ:W-W:—@(LAL)(L/\L):—m%(s—i—l), (27)

where s =0,1/2,1,3/2,... It is thus quite obvious that contrary to the classical case the operator
L AL cannot be null for otherwise from Eq.(27) it would be necessary that m =0 or s = 0.

7By square integrable we mean that f’;ZJ -1y = 1.
8The action of L? on ¢ (in analogy to the square of the Dirac operator) is defined by
L?¢ := L(L¢) = (LuL)¢ + (L A L)é.
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Observe that the spin 1/2 wave function needs to satisfy the fourth order equation

<641£2(L AL)(LAL) — m?s(s + 1)) ¢ =0. (28)

We can factorize the invariant Cy as
<81£L/\L—|—m s(s+1)> <81£L/\L—m\/m> = 0. (29)
Then, a possible second order equation that we will impose to be satisfied by ¢ is®
(L AL — 4\/§m€) ¢ =0. (30)

To continue observe that we cannot factorize L_L — ¢?m? = 0 in two first order operators.
However taking into account Eq.(22) we can write

1
—L—-m? - SLAL=0. (31)

we can now factor Eq.(32) as

oo () (pr)os

3.1 The Tangency Condition and the DHESS1

Let {éo, él, é2, ég, 904} be an orthonormal basis for /\1T*M such that {6* = 6", u=0,1,2, 3}
is a tangent cotetrad basis for de Sitter spacetime, i.e., 8% € sec /\1T*M — secCl(M,g) C
secCﬁ(]\QJ,g) with 6 orthogonal to M, i.e., é4ﬂ'g =0.

We now propose taking into account Eq.(34) that the electron wave function in de Sitter
spacetime must satisfy the linear equation

@L - >\> 6=0, (35)

with the constrain that ¢ is tangent to M, i.e., it does not contain in its expansion terms
<A o4
containing 8 0 .
Eq.(35) will be called the Dirac-Hestenes equation in de Sitter spacetime (DHESS1).

4 An Heuristic Derivation of the DHESS2

We start recalling that a classical free particle in de Sitter manifold structure (M, g) certainly
follows a timelike worldline o : R D I — M. To unveil the nature of that motion we suppose
the existence of a 2-form field L € sec A*T*M < secCl(M,§) such that its restriction over o
islie., L, =1. given by Eq.(10).

9We used that s = 1/2.
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It is a very reasonable hypothesis that the classical motion of a free particle in de Sitter mani-
fold structure (M, g) will happen only under the condition that L € sec A*T*M < sec C4((M, §)
is a constant 2-form B as registered by an hypothetical “observer” living in the bulk space-
time R*!. This is an obvious generalization of the fact that the free motion of a classical
particle in the bulk R*! happens with constant momentum. Let {éA, A =0,1,2,3,4} be
an orthonormal basis for /\1T*M such that {8* = g", p = 0,1,2,3} is a cotetrad basis for
/\IT*M — Cl(M,g) C CE(M,_&) with 6 orthogonal to M, i.e., é4JTg = 0. Then, the condition
that L is a constant 2-form may be written

%L —oB. (36)

Now, let ¢ be an invertible DHSF (i.e., ¢'¢ # 0) such that

B=¢"46'¢¢ =EFE. (37)
Before continuing we also suppose that
066"y = E'E”, A B=0,1,23,4. (38)

Using Eq.(37) in Eq.(36) we can write a purely classic DHESS equation, namely,

1 02 o
ZL¢’*1¢92‘91 = o¢'. (39)

This is compatible with a quantum DHESS1, i.e.,
1 1—1 /1—1
ELgb —o¢p =0 (40)

with the postulate that when we restrict our considerations to DHSFs living in the de Sitter
structure (M, g) it is:

1 a1 oA s
2L¢’*10201 — ;Lo = 66" (XaPp — XpPa) ¢! (41)
0 22 o1
-1 -1 . -1
PA(]S/ — PA¢, = W¢/ 9 0 . (42)

Note that under the above conditions the DHESS1 equation (Eq.(35)) will be identical to the
DHESS?2 (Eq.(40)) if
Ao, ¢ e o (43)

5 The limit ¢ — oo of Eq.(40)

Expressing L sp in terms of the projective coordinates we get

°2 o 1 °2 o
Lot = 10200°0" — 1 (2nara*s” — 0%02)0,00°0". (44)
A 22 o] by 22 =21
Lo = —0u270,00 0 + 1,270,000 0 (45)
We put
1 o4 ocxx °
¢ = (gp + z92040 a:ap) € secClO(M, g). (46)
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with the condition that ¢, p € sec CEO(]\OLQ) (¢ living in a a particular ideal'® of Cﬁo(]\oi,g) and
tangent to the de Sitter manifold). Then Eq.(41) can be written (in the limit ¢ — o) as

casd O 2221 1 caq4 A\ 9 0 =221
o 2 v 124
008 90 gee(naxx:v ada)axygﬁOO
0 0 22 o1
06 (o’ 5 a5y ) 0678~ 20 =0, (47)
Now, calling 6°6" = ' a=0,1,2,3 we easily verify that
rer? 4+ 181 = 298, (48)

Finally, recalling Eq.(46) we can write Eq.(47) in the limit ¢ — oo as

0
r - —— [T — mp = 0. (49)
which is clearly a representative of the DHE in Minkowski spacetime in the C/(M ~ R* n)
bundle which reads!!

75 ai/w — mapy? =0. (50)
Indeed, multiplying Eq.(50) on the right by the idempotent (1 + ~°) it reads (calling ¢ =
¥3(1+4°))
7 5 an ' —m¢=0. (51)
So, Egs. (49) and (50) can be identified with the identifications
I <9y% vl (52)

Remark 4 [t is well known that when ¢ — oo the DHESS1 (Eq.(35)) which is a Clifford
bundle representation of the Dirac equation (written with the standard matrix formalism) is
also equivalent to the DHE in Minkowski spacetime [6].

6 Conclusions

We gave a Clifford bundle motivated approach to the wave equation of a free spin 1/2 fermion in
the de Sitter manifold, a brane with topology M = S0(4,1)/ SO(3 1) living in the bulk spacetime
M = R*! = (R% §) and equipped with a metric field g := —i*§ with ¢ : M — M being the
inclusion map. To obtain the analog of Dirac equation in Minkowski spacetime we appropriately
factorize the two Casimir invariants C; and C5 of the Lie algebra of the de Sitter group using
the constraint given in the linearization of Cy as input to linearize C7. In this way we obtain
an equation that we called DHESS1 (which is simply postulated in previous studies ([4, 6]).
Next we derive a wave equation (called DHESS2) for a free spin 1/2 fermion in the de Sitter
manifold using an heuristic argument which is an obvious generalization of an heuristic argument
permitting a derivation of the Dirac equation in Minkowski spacetime which shows that such
famous equation express nothing more that the momentum of a free particle is a constant vector
field over timelike integral curves of a given velocity field. It is a nice fact that DHESS1
and DHESS2 coincide. We emphasize moreover that our approach leaves clear the nature and
meaning of the Casimir invariants [2] and thus of the object A (Eq.(33)), something that is not
clear in other papers on the subject such as, e.g., [4, 6, 11, 12] which use the standard covariant
Dirac spinor fields.

'%Te., we must have p = i (1+ éo) = cpéo.
"n Eq.(50) {z"} are coordinates in Einstein-Lorentz-Poincaré gauge, and v* := dz*.
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As a last comment here we recall that if the de Sitter manifold is supposed to be a spacetime,
i.e., a structure[14] (M, g,74,V,7T) where V is an arbitrary connection compatible with g then
the writing of Dirac equation in such a structure is supposed to be given by very different
arguments from the ones used in this paper.

Acknowledgement 5 M. Rivera-Tapia and E. A. Notte-Cuello were supported by the Direc-
cion de Investigacion de la Universidad de La Serena DIULS. The work of I. Kondrashuk was
supported by Fondecyt (Chile) Grants Nos. 1040368, 1050512, and 1121030, and by DIUBB
(Chile) Grants Nos. 102609 and 121909 GI1/C-UBB.

A Description of the Dirac Equation in the Clifford Bundle

To fix the notation let (M ~ R‘L,n,D,Tn) be the Minkowski spacetime structure where 7 €
sec T¢ M is Minkowski metric and D is the Levi-Civita connection of 7. Also, 7, € sec N'T*M
defines an orientation. We denote by 7 € secTYM the metric of the cotangent bundle. It is
defined as follows. Let {2#} be coordinates for M in the Einstein-Lorentz-Poincaré gauge [14].
Let {e, = 0/0z"} a basis for TM and {y* = dz*} the corresponding dual basis for T*M, i.e.,
Y (eq) = 04 Then, if n = nuy* ® 4" then n = n*’e, ® e,, where the matrix with entries
N and the one with entries n*” are the equal to the diagonal matrix diag(1, —1,—-1,—1). If
a,b € sec N\'T*M we write a - b = n(a,b). We also denote by (y4) the reciprocal basis of
{v# = da*}, which satisfies y* - v, = L.

We denote the Clifford bundle of differential forms'? in Minkowski spacetime by C/(M,n)
and use notations and conventions in what follows as in [14] and recall the fundamental relation

A F Ay =2 (53)

If {v*, p =0,1,2,3} are the Dirac gamma matrices in the standard representation and
{7V, #=0,1,2,3} are as introduced above, we define

o 1= 0 € sec N2T*M < secCLO(M,n), k=1,2,3, (54)
i =5 := 0717273 € sec AN*T* M < secCU(M, n), (55)
Y5 = Yor17V2 Y3 € C(4) (56)

Noting that M is parallelizable, in a given global spin frame a covariant spinor field can be
taken as a mapping ¥ : M — C* In standard representation of the gamma matrices where

(i =+v—1, ¢,s : M — C?) to 1 given by

mP + im3
(P —m? +im!
¥ = < s / n® + in? ’ (57)
—n? +int

there corresponds the DHSF 1 € sec C{°(M,n) given by'?

Y = ¢+ o3 = (m° + mFioy) + (n° + n¥ioy)os. (58)

12We recall that C¢(T: M, n) ~ Ry 3 the so-called spacetime algebra. Also the even subalgebra of R, 3 denoted
R?,S is isomorphic to te Pauli algebra R3 o, i.e., R?,S ~ R3 0. The even subalgebra of the Pauli algebra Rg,o = ]Rg?o
is the quaternion algebra Ry 2, i.e., Rg 2 >~ ]Rg,o, Moreover we have the identifications: Spin%3 ~ SI(2,C), Sping  ~
SU(2). For the Lie algebras of these groups we have spin(l)73 ~sl(2,C), su(2) ~ sping ;. The important fact to keep
in mind for the understanding of some of the identificastions we done below is that Spin(i37 spin%3 CR30CRy3
and Sping o, sping o C Ro2 C RY 3 C Ry 3.

13Remember the identification:

C(4) ~Ray DRY; ~ Ry,
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We then have the useful formulas in Eq.(59) below that one can use to immediately translate

results of the standard matrix formalism in the language of the Clifford bundle formalism and

vice-versal?

Y < Yo,
i) < Yy = Yios,
Y59 < Yoz = Yy370,
P =iy’ &9,
P! y01h70,
P* o =172 (59)
Using the above dictionary the standard Dirac equation!® for a Dirac spinor field ¢ : M — C*
iy O —map =0 (60)

translates immediately in the so-called Dirac-Hestenes equation, i.e.,

Oy —mapyo = 0. (61)

B Heuristic Derivation of the DHE in Minkowski Spacetime

We start recalling that a classical spin 1/2 free particle is supposed to have its story described
by a geodesic timelike worldline ¢ : R D I — M in the Minkowski spacetime structure Let o,
be the velocity of the particle and let v = g(o,,) be the physically equivalent 1-form. We that
v €secTiM — secCl(M,g). Its classical momentum 1-form is

p = mu. (62)

To continue, we suppose the existence of a 1-form field V € sec A' T*M < sec C/(M, g) such
that its restriction over o is v, i.e., V|, = v. Also we impose that V2 = 1. We introduce also
the P vector field such that P|, = p and consider the equation

P=mV (63)

Let v € secCl°(M, g), be the representative (in the spin coframe =) of a particular invertible
Dirac-Hestenes spinor field such that

P # 0 (64)
and since ¢ = p%e§75R we have
7% = pe®’ RYOR. (65)
P = myn%y (66)
Py = myr° (67)

Eq.(67) is a purely classical equation which is simply another way of writing Eq.(63). To get
a quantum mechanics wave equation we must now change P into P, the quantum mechanics
momentum operator. We know that

Py = 0ynyt = 10yt (68)
Substituting this result in Eq.(67) we get
Ay y' —mypy = 0. (69)

which is the DHE, which, as well known, is completely equivalent to the standard Dirac equation
formulated in terms of covariant Dirac spinor fields.

149 is the reverse of 1. If A, € sec A\"T*M < secC{(M,n) then A, = (=1)2""D A4, .
15 a
8H = Fre
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1. ABSTRACT

The geometric primitive extraction from images is essential in image processing to optimize the
compression of files, image analysis, pattern recognition and three-dimensional reconstruction
of scenes. There is a wide range of algorithms that address the problem in different ways, from
Hough’s Transform, to some based on genetic and optimization algorithms. However, the pro-
posed method uses Radial Basis Neural Networks and line segments to speed up tracking and
detection of the main geometric primitives that compose the given picture. This technique al-
lows three-dimensional reconstruction of scenes avoiding the use of a Point Cloud Data, which
is the most common method, but which turns out to be computationally expensive and very
demanding of memory, and therefore, of difficult implementation in mobile devices.

2. INTRODUCTION

The main purpose of this paper is the extraction of line segments from an image. For this
purpose, the image under analysis is pre-processed using a derivative filter in order to detect
the borders of the objects on the image. This pre-processed image is used by the Neural Net-
work for its own training, and finally, to imitate the image’s topology. While this process is
taking place, the lines that represent our geometric primitives align with the object’s borders.
Additionally, the gradient calculation in the image is accelerated due to the Neural Network
interpolating the image. This allows the calculation of the derivative at each point without
creating an histogram.

For the sake of clarity, a brief description of what a Radial Basis Function Network is, will be
delivered:

2.1. Radial Basis Function Neural Networks. The RBF neural network is a special type of
artificial neural network composed by two layers (see fig 1) in the first layer all neurons use
radial basis functions as activation function. Such a as

(1) a= e*(xﬂfo)zf(y*yo)z7

Being Gaussian function (1) the most commonly used, this function is also called kernel. The
output (f) of this type of neural networks is based on a linear combination (S =} w;a;) of all
activation function (outputs) in the first layer a;. As visually represented in (Fig 1b) thanks to
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2 LINE SEGMENTS EXTRACTION FROM IMAGES USING RBF IN CGA

the linear combination of all the Gaussian functions it is possible to interpolate functions of any
kind, in this case the image should be interpreted as a function, sampled by pixels.

FIGURE 1. a)RBF Neural Network, b)Neural network evaluation in a 2D space.

Unfortunately, due to the image complexity (because most of images contain many high fre-
quency components) too many Gaussian functions are required for the first layer, increasing the
computational overhead of the neural network evaluation.

Because both neural network topology and the training are equally important, the later process
will be explained below:

2.2. Training a RBF using Gaussian kernel. There are many training techniques. Because
of its simplicity, the gradient descendant technique is used. Using mean square error:

L
@) E=>(d~f)

where d is the desired value and f the output of the network. In this case being computed by the
use of the sigmoid activation function:

1
14+eS

3) f=

computing the partial derivative of the error in relation to each input weight (w;):

JE f
4) 8_wl~_(d_f)c9w,~

af B as B .
%) 8_wi_f(l_f)<9w,~_f(l_f)a’

JE
(6) awi:(d—f)(l—f)fai

Equation (6) represents the training rule for the second layer of the neural network. To generate

the training rules for the first layer, the partial derivative of the error E is computed (g—fo) for

each variable xy and yq:

Jd d d
) L a-n—@a-pa-p a—j)

8)6() aX()
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LINE SEGMENTS EXTRACTION FROM IMAGES USING RBF IN CGA 3

recalling s =) x;w;,

(8) 95 — I Lxiwi — Wz%

0xg dxo : 0x¢

. 2 2 . . . . .
and using a; = e~ (%) ~(r=30)" a5 kernel, the partial derivative is given by:

9) gz; — _e*(xfx(i)jf(y*yo)i.z(x_xO)

ai

Finally the error gradient can be expressed as:

JE

(10) T

—[(d—=f)f(1 = flwia; - 2(x —x0)]

The equation (10) represents the training rule for xo. The same methodology can be used to
compute a rule for yy:

JE
N

After this brief overview of Gaussian RBFs, we will introduce a new kernel that will be used in
the first layer of the network which is composed by the Gaussian and the sigmoid kernel

(11) —[(d—=f)f(1 = flwia; - 2(y —yo)]

3. GAUSS-SIGMOID KERNEL

Based on the geometric entity pair of points Pp = P; A Py defined in CGA (G4,1) a definition
line segment function will be created. Such function is smooth and its derivative is also defined
in the domain, and can be used as kernel for the neural network.

Considering the circle Z = PP A p, given by the pair of points PP and the point py = xe; +
yes +1/2(x? +y?)ew + e,, the intensity of a(x,y) is being showed in figure 3a. By using kernel
in the equation (12) the ”‘segmentoid”™ function is being defined as:

_ 2
er

14+e
Where r = Z - ejpe and p = Z- B. The kernel (12) is the result of the multiplication of the
Gaussian kernel u = e~ (see figure 3a) and the sigmoid kernel v = + s (figure3b). It is

important to highlight that ejpe.. and B = (e] + e3)eqs represents constant multivector, the
graphical representation of the kernel a is being presented in the figure (3).

(12) a=uv=

based having a circle as treshold function

FIGURE 2. a)Sigmoid kernel v = 1+ TP

. 2
b)Gaussian kernel u = e~ based in point line distance.
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4 LINE SEGMENTS EXTRACTION FROM IMAGES USING RBF IN CGA

FIGURE 3. Evaluation of the ”‘segmentoid™ function a(Xx,y).

3.1. Training. As we mention before, the output layer was created by a single perceptron,
so the training is made following the gradient descendant and using as activation function the
sigmoid f = 5 + ——, where § =} wx is the linear combination of all inputs (first layer’s outputs).
In order to use the gradient descendant algorithm, the error function needs to be defined:

1
(13) E=5(d—f)

where d represents the desired output for a given input (x,y). The training rule for the i —th
weight w; 1s given by the error derivative:

JE

14 —=d—-f)(1—- '
(14 S =@=p(1=fx
Following the same procedure, it is possible to compute the training rules for the components of
Pp, that allow reducing the error and adjusting each line segment to the image border. In order
to find the training rules using the gradient descendant, the partial derivatives of the kernel (15)
da(x.y)

dxg

will be computed

(15) a=uy=

(16) = —u +Vv=—

Since u =e~" and v = ; +l — with partial derivatives g L — —2ru§—xr0 and g—)cvo =v(l— v)g—z) the
equation (16) can be written as
da ap ar ap ar
17 — =w(l—v)— —2ruv— =a((1 —v)=— — 2r—
( ) 8x0 uv( ) aX() VaX() a(( v) aX() raX())
Then the derivative of r is given b = 9Z while the p derivative is 22 = 9Z .
ris g y 8x0 Ixg " €12€00 p dxo X0

Replacing such derivatives in 17 to have partial derivative of a in terms of circle Z;

Ja a((1 =v)B—2rejzes) - 9z

(18) o

8x0

Following the same procedure the partial derivative of kernel (15) respect to x, yp and yi,
provides the rules for training. Simplifying the equation (18) and doing the same procedure for
the rest of the variables in the pair of points:
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LINE SEGMENTS EXTRACTION FROM IMAGES USING RBF IN CGA 5

(19) xp=x0—6((1—v)(x; —x) =2r(y1 —y))
(20) xp =x1—08((1—=v)(xo—x) = 2r(y = o))
1) Yo =y0—0((1=v)(y1 —y) =2r(x —x1))
(22) Y1 =y1—6((1=v)(yo—y) —2r(xo —x))

where 6 = n(d — f)(1 — f) fwia; and 7 is an scalar value that represents the leaning rate. So
far we have the neural network description and the definition of the training rules. Now lets
discuss about our application and results obtained.

3.2. Line extraction. As we mention before, the main goal is to proximate a line segment for
each border in the analyzed image (borders image). The borders image is the result of applying
a filter(sobel filter) in the original image. In order to achieve our goal, the borders image will be
used to train the neural network (NN). After the training, the NN should be capable to recreate
the image (i.e. learn how to redo the same image, see figure 3.2). In this way, it is possible to
evaluate the NN in a coordinate (X,y) and it should return the value of the intensity of the border
in that particular pixel. After the training of the NN, it is possible to change the resolution of the
image, while keeping the same behavior. Another good thing about this technique is regarding
the noise removal, meaning small segments will be ignored due to the number of neurons in
our NN topology. Additionally, after the training, since each neuron represents a line segment
all, we need to do to extract the line segments from the image is to look for the weights in the
first layer, because they actually are the extreme point in the segment (xo,yo) and (x1,y;).

Training

Evaluation

FIGURE 4. Usage Pipeline

The algorithm was implemented using C + 4 showing good performance (processing 29FPS),
the image (3.2a) shows the input image (borders image) and (3.2b) shows the line segments
iterating to converge at the book borders.

4. CONCLUSIONS

By using this algorithm we were able to extract and approximate line segments faster than using
Hough’s transform, with the advantage that we have the segments not the entire line as we do
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6 LINE SEGMENTS EXTRACTION FROM IMAGES USING RBF IN CGA

FIGURE 5. a) shows the input image, b) line segments iterating over the original
image to converge around the book.

using Hough transform. In some simple scenarios lines segments moves to reduce the error
achieving the real position of the edge. It is possible to increase and decrease the number of
line segments by increasing the number of neurons having an impact in the performance, the
memory used increases linearly with the increment of the line segments and the computational
time increases also linearly. Our next goal will be the geometric primitive extraction using an
stereo camera to retro-project the pairs of line segments and build a 3D environment around the
camera.
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ABSTRACT. Classical field theory is considered as a theory of unparametrized surfaces embed-
ded in a configuration space, which accommodates, in a symmetric way, spacetime positions
and field values. Dynamics is defined by a (Hamiltonian) constraint between multivector-valued
generalized momenta, and points in the configuration space. Starting from a variational princi-
ple, we derive local equations of motion, that is, differential equations that determine classical
surfaces and momenta. A local Hamilton-Jacobi equation applicable in the field theory then
follows readily. The general method is illustrated with three examples: non-relativistic Hamil-
tonian mechanics, scalar field theory, and string theory.

Throughout, we use the mathematical formalism of geometric algebra and geometric calcu-
lus, which allows to perform completely coordinate-free manipulations.

1. INTRODUCTION

In non-relativistic mechanics, the trajectory of a particle is a function x(¢), which describes
how the position of the particle changes with time. In relativistic mechanics, space and time
are treated equally, and the particle’s trajectory is regarded as a sequence of spacetime points

(t,x).

In field theory, the field configuration is usually viewed as a function ¢ (x) that describes how the
field varies from point to point. However, general relativity suggests [1] that the spacetime is a
dynamical entity, which should be put with fields on the same footing. Mathematically, instead
of a function ¢(x) one should therefore consider the respective graph, i.e., the collection of

points (x,¢).

In this article, we study the mathematical formalism proposed in [1, Ch. 3] that treats time,
space, and fields equally. All these entities are collectively called partial observables, and
together they form a finite-dimensional configuration space. Classical field theory predicts that
certain correlations between partial observables can be realized in nature. These are then called
physical motions, and have the form of surfaces embedded in the configuration space.

Our dynamical description utilizes multivector-valued momentum variable, which can be thought
of as conjugated to the motion’s tangent planes; thus generalizing the canonical momentum
conjugated to the velocity vector in classical mechanics. Individual theory is specified by a
choice of the Hamiltonian H, which is a function of a configuration space point g and momen-
tum P. This Hamiltonian enters into a variational principle (Section 2) via the Hamiltonian
constraint H(gq,P) = 0.

The aim of this article is to establish, in the first place, equations of motion that follow from
the variational principle. This is done in Section 3, Egs. (13). These equations generalize the
Hamilton’s canonical equations of motion of classical mechanics. From Eqs. (13) we derive
the local Hamilton-Jacobi equation (20), which generalizes to the field theory the respective
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2 CLASSICAL FIELD THEORIES FROM HAMILTONIAN CONSTRAINT

concept from classical mechanics (in this context, see also Refs. [2] and [3]). It should be
stressed that both, Egs. (13) and (20), contain only partial, not variational, derivatives.

Three examples are provided in Section 5 to demonstrate universality of the present formalism.
In the first example (5.1), non-relativistic mechanics is deduced when we assume that the mo-
tions are one dimensional curves, and choose the Hamiltonian H appropriately. Eqs. (13) then
reduce to the Hamilton’s canonical equations, accompanied by the law of energy conservation,
and the Hamilton-Jacobi equation of classical mechanics is recovered.

The second example (5.2) discusses the theory of real one-component scalar field defined on
a Euclidean spacetime of any dimension. Eqs. (13) produce the correct field equation, and,
at the same time, they incorporate the continuity equation for the energy-momentum tensor.
Hamilton-Jacobi equation reproduces the one invented by Weyl [4].

In the last example (5.3) we treat relativistic particle, string, or higher-dimensional membrane,
depending on the dimensionality of the motions. The configuration space is identified with the
target space of the string theory, motions are the worldsheets, and the corresponding Hamil-
tonian is essentially the simplest and most symmetric function of the momentum variable. The
equations of motion have simple geometric meaning, namely, they ensure that the mean curva-
ture of the physical motion vanishes. In fact, this is exactly the condition that defines minimal
surfaces [5].

One more remark is in order before we start. All manipulations are performed in the mathe-
matical formalism of geometric (or Clifford) algebra and calculus developed by D. Hestenes
[6] (see also Ref. [7]). It is a coordinate-free language that is more universal than the calculus
of differential forms, nevertheless, it is yet not well-recognized by a broad audience. Reader
unfamiliar with geometric algebra or calculus is recommended to first read, e.g., Appendix A
of Ref. [8], where the basics are briefly introduced.

2. VARIATIONAL PRINCIPLE

We start with a set of partial observables that constitute a (D + N)-dimensional Euclidean con-
figuration space 4. A point ¢ in the configuration space represents simultaneous measurement
of all partial observables, e.g., ¢ = (x,¢). To establish a physical theory, one has to spec-
ify correspondence between the partial observables, and physical measuring devices, such as
clock, rulers, or instruments measuring components of the field. In this article we take such
correspondence for granted, as we are only concerned with the mathematical aspects of the
theory.

Denote by D the dimensionality of motions, i.e., submanifolds y of the configurations space
%. With D = 1 we can study particle mechanics, with D = 2 we can do string theory, or field
theory in two dimensions, and so on. We shall not deal with systems with gauge invariance,
for which the mathematical motion (the surface in ¥’) has higher dimensionality than the actual
physical motion (the trajectory).

Tangent space of Y at point ¢ is spanned by D linearly independent vectors ay,...,ap, which
are conveniently combined into a grade-D multivector a; A ... Aap. Normalized version of the
latter is called the unit pseudoscalar of 7y, and it is denoted by I. In the terminology used in
Ref. [10, Ch. 6], the function Iy(q) represents a D-dimensional distribution on %, with y being
its integral manifold.

Fundamental for the following formulation of dynamics is the concept of generalized momen-
tum, which is a grade-D multivector, denoted by P, defined at each point of y (see Fig. 1). It
serves as a quantity conjugated to Iy, thus generalizing the canonical momentum of particle
mechanics.
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CLASSICAL FIELD THEORIES FROM HAMILTONIAN CONSTRAINT 3

Oy = 0y
FIGURE 1. Variational principle.

The last ingredient is the Hamiltonian H (g, P), which is supposed to be scalar-valued. (Gener-
alization to the case of multicomponent H is straightforward.)

The variational principle can now be stated as follows (cf. [1, Ch. 3.3.2]):

Variational principle. A surface Y., with boundary 07 is a physical motion, if the couple
(Ye1, Pe1) extremizes the (action) functional

M) /1P = [ Plo)-ar(g
in the class of pairs (v, P), for which dy = 9%, and P defined along vy satisfies
2) H(q,P(q)) =0 Vgev.

(The subscript “cl” stands for “classical” motion, or trajectory, which we sometimes use instead
of the expression “physical” motion.)

The integral in (1) is defined in [6, Ch. 7-1] (see also Ref. [9]) without having recourse to a
parametrization of the surface y. Of course, if desired, the oriented surface element dI" can be
cast, using arbitrary coordinates on 7, as

dq

_ (24

The integrand in (1) may be rephrased as a differential form 6 = p;, _j,dq’' A...Adg’?. How-
ever, the merit of geometric calculus consists, in fact, in splitting of the differential form into
two parts, dI" and P, where P is able to enter into functions such as H(gq, P).

Finally, let us note that in [1, Ch. 3.3.2] the action is an integral of 8 over the submanifolds
of the bundle of D-forms over 4. Since we hesitate to work in spaces mixing points ¢ and
multivectors P, we rather operate with surfaces in %, on which the momentum field is defined.

3. CANONICAL EQUATIONS OF MOTION

We will now derive the equations of motion that follow from the variational principle of Sec-
tion 2. For this purpose, we incorporate the Hamiltonian constraint (2) into the action (1) by
means of a scalar Lagrange multiplier A. The augmented action is the functional

@) Ay, PA] = /y P(g)-dT(q) — A(q)H (g, P(9))],
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4 CLASSICAL FIELD THEORIES FROM HAMILTONIAN CONSTRAINT

where A is in fact an infinitesimal quantity with magnitude comparable to |dI"| — the magnitude
of dT.

Varied action <[y, P’, A'] is the integral taken over a new surface Y/, and featuring new func-
tions P’ and A, which are defined along ¥’ (see Fig. 1). Let f, where

(5) f(q) =q+d4q(q),

be the infinitesimal diffeomorphism mapping between y and ¥, ie., ¥ = {¢ = f(q)|q € 7},
and denote by

6) 6P(q) =P'(f(q))—P(g) and S6A(q) =1"(f(q))—A(q)
the variations of momentum and Lagrange multiplier, respectively.

Variation of the action (4), 6«7 = [y ,P',A'] — /[y, P, A], is given by
6./ =/y [P'(£(q)- f(dT(q):q)—A"(f(q)H (f(q),P'(f(q)))]

™ - /y [P(g) - dT(q)~A(q)H(g,P(q))],

where we have employed the integral substitution theorem [6, Ch. 7-5] to transform the integral
over ¥ into an integral over y. For the infinitesimal diffeomorphism f, the outermorphism
mapping f that specifies the transformation rule for multivectors, is given by Formula (A29) in
Ref. [8]. Therefore, up to first order in 6¢g, P and 6 A, we find

542{:/}/[(P+5P)-(dF+(dF-8q)A5q) —(A+082)H (q+8q,P+8P) — P-dU+AH(q,P)]

(8)
~ / [—61 H(q,P)+ 8P (dT — A dpH(q,P)) — A 8q- 9;4H (¢, P) +P- ((dT - d,) A Sq)] :
Y

where the vector derivative d,, and the multivector derivative dp are defined in [6, Ch. 2-1],
and [6, Ch. 2-2], respectively. The “overdot” notation is used here to indicate the scope of the
differential operator d,;, and has nothing to do with time derivative. Without an overdot, any
differential operator is supposed to act on functions that stand to its right.

The last term in (8) can be recast with a help of the Fundamental theorem of geometric calculus
(see [6, Ch. 7-3)),

©) /YP~((a’F-8q)/\5q) :/a

where dX is the oriented volume element of the boundary dy. Now, the first term on the right-
hand side vanishes, since we assume that ¥ and ¥ have common boundary.

P-(dZ/\éq)—/P-((dF-Qq)ASq),

Y Y

For D =1, dTI"- d, is algebraically a scalar, and so the integrand in the second term is readily
reshuffled,

(10) P-((dT-9,) A8q) = 8q- (dT-9,P).

(13RS

(Mind the priority of the inner product “-”, and the outer product “A” before the geometric
product, which is denoted by an empty symbol.)

For D > 1, we find
(11) P-((dT-9;)A8q) = (P-(dT-9,))-8q = (—1)P"'8q- ((dT-9,) - P).

The two cases have to be treated separately due to the definition [6, Eq. 1-1.21] of the inner
product.
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After these rearrangements we arrive at our final expression for the variation of the action,

5.7 %/ (~8AH(q,P)+ 8P (dT — A dpH (g, P))
Y

(12) +8q ((—1)D(dr.aq)-P—)LaqH(q',P)ﬂ,

which holds for D > 1, while the case D = 1 is obtained simply by replacing (dI"- d,) - P with
dI'- d,P. The requirement that the variation of the action be zero for all P, 6q and 07 yields
the following

Canonical equations of motion. Physical motions 7. are obtained by solving the system of
equations

(13a) A dpH(q,P) =dT,
Dy . Jar-o,p forD=1
(13b) (—=1)"AdgH (¢, P) = {(dr.aq) P forD>1,

(13¢) H(q,P)=0.

(We use the adjective “canonical”, because these equations generalize, as we shall see in Ex-
ample 5.1, Hamilton’s canonical equations of motion of classical mechanics.)

The first canonical equation (13a) furnishes a relation between the momentum P, and the tan-
gent planes of y represented by the oriented surface element dI". It asserts that the multivector
derivative dpH, which is a grade-D multivector, is proportional to dI", with the proportionality
constant equal to A. Note that one can always normalize dI" and A by the magnitude |dT| to
free Egs. (13) from infinitesimal quantities.

The second canonical equation (13b) describes how the momentum multivector P changes as it
slides along the surface y. It is important to note that P is differentiated effectively only in the
directions parallel to 7, as a consequence of the inner product between the surface element dI’,
and the vector derivative d,. Moreover, the “overdot” on the left-hand side assures that only
explicit dependence of H on ¢ is being differentiated, not the dependence through P(gq).

The last canonical equation (13c) is the Hamiltonian constraint (2). Let us remark that had
we started with several constraints H;(g,P) = 0 in the variational principle, we would have
introduced the corresponding number of Lagrange multipliers A;, and the canonical equations
would contain the terms Y ; A;H; instead of A H.

4. LocAL HAMILTON-JACOBI THEORY

One possible method to approach the canonical equations (13) is the following. Suppose P(q)
is given, that obeys the Hamiltonian constraint

(14) H(q,P(q)) =0

on some open subset of the configuration space 4. By differentiation, we obtain, according to
the chain rule,

(15) IgH (4, P(q)) + 9,P(q) - opH (g, P(q)) =0,
and using the first canonical equation (13a), we find

(16) A 9gH (4, P(q)) = —9,P(q) -dT.

But the right-hand side may be rearranged,

dl'- (d; AP(q)) —dT - 9,P(q) forD =1

(17) laqH(q,P(‘])) = {(—I)D_ldf- (8q/\P(q)) + (_I)D(dr.aq) -P(q) forD >1,
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and therefore we observe that if

the second canonical equation (13b) is automatically fulfilled. Momentum satisfying this con-
dition can be expressed, at least locally, as P(q) = d, A S(g), where S is a multivector of grade
D — 1. Canonical equations (13) are then reduced to two equations,

(19) AdpH(q,9,\S) =drI,
and the local Hamilton-Jacobi equation
(20) H(q,9,\S)=0.

If we succeed in finding a solution of Eq. (20), we can plug it into Eq. (19), which then defines
a distribution of tangent planes of a classical motion surface. This distribution is integrable
only if certain conditions are satisfied (see [10, Ch. 6.1]).

In addition, if we find a whole family of solution S(g; &), parametrized by a continuous param-
eter ¢, then differentiating Eq. (20) with respect to o, and substituting Eq. (19), yields

21) 0=AdaH(q,0;\S) = A 0 (Iy \S) - IpH(q,0, \S) = dT - (94 A (9aS)).
Now, for D = 1, the Hamilton-Jacobi function S is scalar-valued, and we have
(22) dl'-0y(deS) =0 = duS(q:) =P Vg€ Y,

for some constant 3, meaning that the quantity dyS(q; o) is conserved along physical motion. If
one finds N such parameters (recall that the dimension of the configuration space is N + 1), the
physical motion Y can be given implicitly by a set of constraints between partial observables,

3alS(q;(Xl,...,(XN) Zﬁl

(23) dayS(gi0u,...,0n) = B

Of course, we assume that the N constraints are independent, i.e., that the gradients
94(0,S); - -, 94(deyS) are at each point linearly independent. In Example 5.3 we will illus-
trate the Hamilton-Jacobi method with the case of a relativistic particle.

When D > 1, we can cast Eq. (21) as

(24) (dl'-9y) - (0aS) =0 = (dl'-9y) - (daS) :/a dX-(deS) =0,

Yl Yel
where 7 1s an arbitrary D-dimensional subset of ¥ (a “patch” on 7). Therefore, in the multi-
dimensional case, the conservation law (22) is replaced with a certain continuity equation.

One remark is in order before closing this section. In classical particle mechanics, one of the
solutions of the Hamilton-Jacobi equation is the action along classical trajectory, regarded as
a function of one of the endpoints. In field theory, the classical action may be viewed as a
functional of the boundary d¥.;. Some authors (e.g. [1, Ch. 3.3.4]) have therefore considered a
variational differential equation that describes how the classical action changes under variations
of the boundary, naming it also “Hamilton-Jacobi equation”. Note that Eq. (20) is substantially
different from this kind of approach, for it contains only partial, not variational, derivatives.
That is why we call it “local Hamilton-Jacobi equation”. Local Hamilton-Jacobi theory is also
treated, e.g., in Refs. [2] and [3].

5. EXAMPLES

In the following examples, we illustrate the general theory by specifying a concrete form of the
Hamiltonian H (g, P).
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5.1. Non-relativistic Hamiltonian mechanics. Let us consider D = 1, and choose a constant
unit vector e; in the configuration space ¥ ~ R!™V. Arbitrary point ¢ can be decomposed as
q =t +x, where ¢ is parallel to e;, while x is perpendicular to e;.

Define the Hamiltonian as follows:
(25) H(q7p):P'et+H0(q7P)v

where ¢; - dpHy = 0, and H, is identified as the non-relativistic Hamiltonian of a mechanical
system.

When we present the physical motion 7 as

(26) Yo ={q=2g(t) =t+x(r)|7 € span{e,;} ~ R},
the line element on the 7-axis is related to the line element on ¥ via the differential g,
27 dl' = g(a’t) =dt +dt - dyx.

It is shown in [8, Sec. V-A] that Egs. (13) reduce to Hamilton’s canonical equations of motion
for a non-relativistic system with non-relativistic Hamiltonian Hy, together with the law of
conservation of the total energy Hy (if ¢; - d,Hp = 0, i.e., if Hy does not depend explicitly on
time). Intuitively, the Hamilton’s canonical equations follow from variations of the trajectory y
in the x-space, while the energy conservation is a result of variations in the z-space.

Hamilton-Jacobi equation (20) for a scalar function S(g) reads
(28) H(q,9,S) = e - 9,8+ Ho(q,9,5) =0,

and hence reproduces the standard Hamilton-Jacobi equation of classical mechanics.

5.2. Scalar field theory. In this example we will show that the formalism based on Hamilton-
ian constraint can accommodate the theory of real one-component scalar field ¢ (x), defined on
a D-dimensional Euclidean spacetime by the Lagrangian

9) 2(0,09) = (2:0)* V().

For this purpose, let us assume D > 1, choose a unit D-blade I, in a (D + 1)-dimensional con-
figuration space ¢, and define the Hamiltonian

(30) H(Q7P) :Plx+H0(Q7P)7

where I, - dpHy = 0. The blade I, defines a splitting of the configuration space ¢ into a D-
dimensional spacetime, spanned by an orthonormal set of vectors {ej,...,ep}, [ = e;...ep,
and the field space, which is its one-dimensional orthogonal complement, represented by a unit
Vector ey,.

A physical motion ] assumes the form
(D %1 = {g=g(x) =x+y(x)|x € span{ey,...,ep} ~ RP}.

The surface element dI is related to the infinitesimal element of the x-space dX = |dX|I; via
the outermorphism mapping induced by the function g, dI" = g(dX).

Taking specifically

(32) Ho= =Y (P-Ej))*+V(9),

Mo

1
2j1

where ¢ = e, -y, Egs. (13) yield
(33) %19 = =0,V (9),
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which is the equation of motion of a scalar field described by the Lagrangian (29). In addition,
owing to the fact that Hy does not depend on x explicitly, Eqs. (13) provide the continuity
equation

(34) er- 0 Tjk =0,
where
(35) Tik=—06iL(9,0x0) + (e h9)(ex - x9P)

is the canonical energy-momentum tensor of the scalar field with Lagrangian (29).

Detailed derivation may be found in [8, Sec. V-B], where the connection with De Donder-Weyl
Hamiltonian field theory [4, 11, 12] is also discussed. Intuitively, the equation of motion (33)
is a result of variations of the surface ¥ in the y-direction, while the continuity equation (34)
follows from variations in the x-plane.

Finally, let us say a few words about the Hamilton-Jacobi theory. Equation (20) with Hamil-
tonian (30) reads

(36) I (9, AS) + Ho(g,d, AS) =0,

where S(g) is a multivector of grade D — 1. For concreteness, consider Hy given by Eq. (32),
and assume S is parallel to I,. Defining the vector s(q) = S(g) - I, also parallel to I, and blades
E; = Ieje,, we observe that

L- (g NS) =0y,
(37) Ej-(dgNS)=ey-dyej-s.
Eq. (36) then takes the form (note that dys = e, - d;5)

1
(38) 05+ (998)? +V(9) =0,
which coincides with the field-theoretic Hamilton-Jacobi equation derived formerly by Weyl
[4].
5.3. String theory. Probably the simplest nontrivial Hamiltonian to consider is
1
(39) H = (P =A%),

where A > 0 is a scalar constant, and |P| is the magnitude of P.

According to the basic multivector derivatives listed in [6, Ch. 2-2], the first canonical equation
(13a) takes the form

(40) dl' = AP,

where P denotes the reversion of P, and substituting this relation into the Hamiltonian constraint
(13c) fixes the absolute value of the Lagrange multiplier A,

@1) dT| = |1|A.
Furthermore, substituting Eq. (40) into the second canonical equation of motion (13b), dividing
by A, and using Eq. (41) we find

ly-941y=0 (D=1),
(42) (Iy-9g)-Iy=0 (D>1),
where I, = dI'/|dT’| is the unit pseudoscalar of the surface y. This equation has a simple

geometric interpretation. It entails vanishing of the mean curvature of 7y, or of its generalization,
the spur vector (see Ref. [6, Ch. 4-4]).
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Egs. (40) and (41) allow us to rewrite the action (1) in terms of dT’,

(43) /P-dr:/l|dr|2:i/\/|dr|,
Y YQL Y

where “+” is the sign of A. This is the Euclidean Nambu-Goto action of the string theory [13].
It is proportional to the volume of the worldsheet ¥, with A playing the role of string tension
(the speed of light is set to unity). Extremals of this action, i.e., solutions of Eq. (42), minimize
the volume, and so are called minimal surfaces in mathematical literature [5].

In this example the Hamilton-Jacobi equation (20) takes a particularly compact form (cf. Ref.
[2, Ch. 7])

(44) 10, 7S] = A
From now on, let us focus on the case D = 1, which describes the relativistic particle in the
Euclidean spacetime. We will present two methods for finding the physical motions.

First, suppose that two points, go and g, lie on 7y, multiply Eq. (42) by |dT|, and integrate along
Y1 from gg to g. The Fundamental theorem of calculus implies that

(45) Iy(q) — Iy(q0) =0,
i.e., Iy is constant along a physical motion, and ¥ are therefore a straight lines in ¢,
(46) Ya={g=vi+qlreR}

where go € € and v is arbitrary constant vector.
Second method utilizes a family of solutions of the Hamilton-Jacobi equation (44), for example,
47) S(4:90) = Alg —qol-

According to Formula (22), derivative of S with respect to the parameters g( yields conserved
quantities

(48) DgyS = —A-L—10
19— qo|

Physical motion are then obtained readily,

(49) %1={q‘ 91— 40 =v},
\4—610\

where v is an arbitrary constant unit vector.

6. CONCLUSION AND OUTLOOK

In this article we elaborated on the formulation of classical field theory presented in [1, Ch. 3],
which is based on the notion of partial observables, and on the Hamiltonian constraint. The
latter is a function of configuration-space point and the generalized multivector-valued mo-
mentum. Starting from the variational principle of Section 2 we derived canonical equations of
motion (13). We also deduced local Hamilton-Jacobi equation (20), which can be a useful tool
to find the physical motions.

With three ensuing examples we showed how non-relativistic mechanics, scalar field theory,
and string theory can be described in one unifying framework by appropriately selecting the
Hamiltonian constraint. In particular, we noticed that equations of motion, and the continuity
equation for the energy-momentum tensor (which reduces to the energy conservation equation
in the case of non-relativistic mechanics) are in fact of the same origin in the Hamiltonian
constraint formalism. Therefore, this formalism may be of interest even for theories that do not
assume symmetry between time and space, or spacetime and fields.
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10 CLASSICAL FIELD THEORIES FROM HAMILTONIAN CONSTRAINT

Hamiltonian formalism is especially important when it comes to quantization. In particle me-
chanics, momentum is promoted to a differential operator, and the Schrodinger equation is
postulated. What is the quantum operator corresponding to the multivector-valued generalized
momentum of the Hamiltonian constraint approach? And what does the Schrédinger equation
look like, once we know the classical Hamilton-Jacobi equation (20). Although these questions
have not been addressed in general, let us note that there have been studies of quantization in
the De Donder-Weyl Hamiltonian theory, where the quantization of momenta is based on gen-
eralized Poisson brackets, and a field-theoretic generalization of the Schrodinger equation is
proposed that features Clifford-valued wave function [12, 14].
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